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Abstract

Dependent type theory and sub-structural typing are two of the most influential ideas in

modern computer science research. Sub-structural types have recently found widespread

mainstream applications as part of the Rust programming language in the form of ownership

types [13], which extend affine types with the concept of “borrowing.” Rust’s type system

allows us to check memory safety, thread safety, and complex user-defined invariants (e.g.,

holding a mutex lock while accessing a resource) at zero runtime cost. Recent work, such

as by Krishnaswami et al. [12], has allowed us to integrate linear types with dependent

types, to obtain linear dependent types (LDTs). This project aims to generalize existing

work on linear dependent types by designing and implementing a simple language integrating

ownership and dependent types, i.e., “dependent types with borrowing,” with the main aim

of exploring the possible design space for type systems supporting this functionality. To do

so, we build on Krishnaswami et al.’s separation of the space of (dependent) intuitionistic

functions and linear functions by extending the latter with a notion of “borrowing” a value

for a “lifetime.” We then further generalize the previous work by making linear function types

(partially) dependent: minor tweaks to this system ensure that we retain properties amenable

to low-level implementation (e.g., fixed binary representation for return values, avoiding the

need for boxing with standard calling conventions).
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Chapter 1

Introduction

This chapter attempts to explain and motivate the main objective of this project, namely,

to explore the design space of dependent ownership types via the design of the experimental

programming language isotope and it’s type system. In particular, we describe the applica-

tions of dependent typing and ownership typing, and previous work on combining dependent

types with linear types, which ownership types may be viewed as a generalization of. We then

describe some of the potential applications of a combined system of dependent and owner-

ship types, and proceed to describe our objectives in the design of isotope. Finally, we lay

out the organization of the remainder of the thesis, and finish with a summary of our main

achievements.

1.1 Motivation

We can view a type system as having two primary functions: assigning types to values and

restricting where they can be used based on their types. From a correctness standpoint,

this enables weeding out large classes of trivial “round peg in a square hole” errors, such as
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attempting to add an integer to a string, even before running a program. Such information

can also significantly improve the quality of compiled programs by enabling implementors

to make numerous optimizations, such as unboxing and static dispatch. Sub-structural type

systems go further by restricting how often we may use a given term. For example, we

can model exhaustible resources like memory allocations and open file handles by restricting

values of certain types to be used at most once; such types are called affine. Languages such

as Rust and C++ use such a mechanism via the “RAII” pattern to provide a semblance of

automatic memory management without requiring a garbage collector. Similarly, by requiring

that values of certain types, such as file handles and error codes, are observed at least once,

we can avoid common bugs such as resource leaks and ignored error conditions; such types

are called relevant. Linear type systems are sub-structural type systems that include support

for affine and relevant types (a type which is both affine and relevant is called linear).

Linear typing shows promise as a tool to efficiently implement traditionally stateful oper-

ations, such as array updates, in a purely functional setting, without recourse to “magical”

state monads and their underlying unsafe operations [4, 20]. In particular, a linear type system

can allow us to model effects (such as exceptions) as relevant types, hard-to-clone resources

(such as arrays and file handles) as affine types, and hence, state, or effect on resources, as

linear types. In doing so, we can “embed” imperative programming into a purely functional

language with, at least theoretically, no loss in performance, without losing the benefits of,

e.g., referential transparency and immutability.

Dependent type systems, on the other hand, generalize simple type systems by allowing

types to depend on terms. For example, where we were previously limited to, e.g., declaring

x to be an array of integers, we can now state it is an array of length n + 3 with first element
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2 * n, where n is some runtime variable. By doing so, we can give precise, compiler-verified

specifications of the functional behavior of a term in its type alone. Via the Curry-Howard

correspondence, we can regard terms in a dependently-typed language as mathematical proofs,

and indeed the primary application of dependent type theory today is as the formal under-

pinning for proof assistants such as Coq [17].

By extending Benton’s linear/non-linear calculus [3] to support type dependency, Krish-

naswami et al. [12] have demonstrated an integration of linear and dependent types. En-

coding imperative programs as linearly typed terms via a system of locations and reference

capabilities (in other words, pointers and the permission to access pointees), they proceeded

to demonstrate an internal, “proofs as programs” methodology for imperative programming

based off this system [12]. This strategy, however, requires that we manually prove all pointer

access valid, which can very quickly become very cumbersome. Moreover, common patterns,

such as aliased references, become rather complex to implement: say we have a function that

takes a pair of pointers and a reference capability for each. If we want to pass in the same

pointer twice, we will not be able to since reference capabilities are linear. While this is a

feature for functions like memmove, for which aliased arguments is undefined behavior, it is not

great for something like “compute the dot product of two vectors.” Of course, such patterns

are possible to implement, but it is tedious and manual.

Outside the world of purely functional programming, one of the most promising applica-

tions of sub-structural typing in modern programming language design is the Rust language’s

system of ownership typing [13, 9, 10]. By extending an affine type system with the ability

to “borrow” resources without consuming them, the Rust language allows the programmer to

perform complex, machine-checked resource management without using a garbage collector,
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allowing statically-checked memory safety and thread safety without runtime performance

overhead. In particular, ownership types allow seamlessly modeling data structures such as

mutexes, reference-counted pointers, containers, and channels in a type-safe way.

Unfortunately, for some low-level tasks and primitives, Rust programmers must drop down

to “unsafe” code, which allows the manipulation of raw pointers but, consequently, comes

with all the risks of C [13, 9, 10], as ownership and borrowing rules are left unchecked. This

functionality is used ”under the hood” to implement many of Rust’s core data structures,

including vectors (growable arrays), hash maps, mutexes, and reference-counted allocations,

which expose a safe interface statically checked by Rust’s type system. Rust promises that

assuming the unsafe foundations of a program are sound, the program itself is free of unde-

fined behavior regardless of the actions performed by any “safe” code. Proving this guarantee,

along with formalizing the exact requirements for unsafe code to be considered sound, was

the main aim of the RustBelt project [9].

The goal of this thesis is to generalize the work in Krishnaswami et al. [12] to the integra-

tion of dependent types and ownership types, which we call “dependent types with borrowing.”

In doing so, we hope to address the problems mentioned above with pointer-based modeling

of imperative programs by, like Rust, performing the majority of such checking automatically

within the type system rather than by manually juggling capabilities. More interestingly,

since ownership types are a strict generalization of linear types, manual separation logic like

management of locations and reference capabilities should still be possible in a system of de-

pendent ownership types. Therefore, instead of dropping down to unsafe code, it should be

possible to drop down to these more primitive operators instead and hence verify the safety

of “unsafe blocks” without using external tools. Eventually, we hope such a system is a step
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towards an easy-to-use, safe, Rust-like systems programming with verified foundations that

anyone can extend without dealing with complicated proof assistants and external tools.

To address this goal, we introduce the novel concepts of instants and constraint sets,

which we use to encode ownership types, and attempt to design a simple dependently typed

language around this paradigm. The main aim of this thesis is to explore the design space for

such languages; consequently, we focus on experimenting with different possible features and

implementations rather than formalizing a fixed set of rules. Nevertheless, we do attempt to

have our work be at least amenable to formalization, and consequently, we provide a semi-

formal exposition of our calculus in terms of typing rules.

1.2 Objectives

The main objective of this project is to explore design space around the integration of own-

ership types and dependent types. To do so, we introduce the “isotope” language, a simple

dependently-typed lambda calculus supporting a notion of “borrowing” values, which we call

the “dependent types with borrowing” model of dependent ownership types. This is imple-

mented by introducing the novel notions of instants and constraint sets, which we use to

encode a system of ownership typing. We intend isotope to be a minimal, experimental

implementation of this design to study its theoretical and practical properties. We aim to

give a semi-formal theoretical description of isotope, motivated by examples throughout,

and explore some of its basic properties and potential extensions, concluding with the current

status of an (unfinished) concrete implementation of the isotope language in Rust.
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1.3 Thesis Structure

This thesis is composed of 6 chapters (including this introduction), which describe the back-

ground theory, typing rules and a sketch of a compilation algorithm for isotope, our imple-

mentation work thus far, and a conclusion.

• In Chapter 2, we cover the preliminary knowledge and background theory necessary to

understand isotope. Beginning with a brief overview of the untyped lambda calculus

in Section 2.1, we cover simple type theory and substructural typing in Section 2.2.

We then give a brief review of dependent type theory, in the style of the Calculus

of Constructions (borrowing from [17]), in Section 2.3. Changing gears, we give a brief

description of the C programming language and it’s basic features, as well as the problem

of undefined behaviour, in Section 2.4. Finally, we give an overview of the Rust language

and it’s system of ownership types in Section 2.5.

• In Chapter 3, we cover the core isotope language and type system, and consider some

example programs. Beginning with an informal overview of the language in Section

3.1, we give a rule-by-rule account of the type system and grammar of the language in

subsequent sections.

• In Chapter 4, we give a sketch of an algorithm to lower isotope programs, as defined

in Chapter 3, to a low-level C-like pseudocode.

• In Chapter 5, we describe the current status of the Rust implementation of isotope,

and give a brief overview of some of the practical differences between the theory and

the concrete language.
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• In Chapter 6, we reflect on our current progress and discuss possible further work,

completing the isotope interpreter and compiler, including support for nontermination,

and including support for proper heap manipulation.

1.4 Achievements

1. Define a programming language and type system, isotope, which integrates dependent

types and ownership types via the usage of instants and constraint sets, in Chapter 3.

2. Invent and implement an algorithm, the borrowck algorithm from Section 3.4, for check-

ing constraint sets for consistency, as a functional analog to Rust’s borrowck pass.

3. Give a sketch of an algorithm for compiling isotope programs into a low-level C-like

pseudocode in Chapter 4.

4. Partially implement a type-checker and interpreter for isotope, as detailed in Chapter

5, in the Rust programming language.
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Chapter 2

Background and Preliminaries

In this chapter, we cover the background and preliminary materials for the main body of

the thesis. We briefly review the untyped lambda calculus in Section 2.1 and simple types

and the Curry-Howard correspondence in Section 2.2. In Section 2.3, we give an overview of

dependent type theory in the form of a summarized presentation of the Calculus of Inductive

Constructions, the underpinnings of the Coq theorem prover. Section 2.3 will later form the

core of the intuitionistic typing rules we introduce in Chapter 3 when formally developing our

type theory. Changing gears, in Section 2.4, we briefly review the C programming language

and some basic systems programming concepts. In Section 2.5, we compare and contrast this

with a basic overview of Rust and its system of ownership types.
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2.1 The Lambda Calculus

2.1.1 Terms

The lambda calculus is among the simplest intuitive examples of a programming language,

and hence, makes a good setting for developing and analyzing type theories. As we will

extensively use the lambda calculus in this thesis, we will review its essential properties. The

set of lambda calculus terms, Λ, is usually defined inductively as follows:

x ∈ V
Varx ∈ Λ

s ∈ Λ t ∈ Λ
Appst ∈ Λ

x ∈ V s ∈ Λ
Absλx.s ∈ Λ (2.1)

where V is an infinite set of variables. We will use s ≡ t to describe syntactic equality between

terms in Λ. We assume application is left associative, i.e. xyz ≡ (xy)z. For brevity, we will

write λxyz.t to mean λx.λy.λz.t. Our goal is to interpret abstractions λx.s as functions via

substitution: (λx.s)t should be equal to “s with t substituted for x.” To make this rigorous,

we define substitution of terms inductively, for all x ∈ V and t ∈ Λ as follows:

x[t/x] ≡ t

∀y ∈ V \ {x}, y[t/x] ≡ y

∀l, r ∈ Λ, (lr)[t/x] ≡ (l[t/x])(r[t/x])

∀s ∈ Λ, (λx.s)[t/x] ≡ (λx.s)

∀s ∈ Λ,∀y ∈ V \ {x}, (λy.s)[t/x] ≡ λy.s[t/x]

(2.2)
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We define the set of free variables, i.e. those not bound by a λ-abstraction, of a term as

follows:

fv(x) = {x}

∀l, r ∈ Λ, fv(lr) = fv(l) ∪ fv(r)

∀s ∈ Λ,∀x ∈ V, fv(λx.s) = fv(s) \ {x}

(2.3)

One downside of the inductive definition in Equation 2.1 is that λy.y 6≡ λx.x, even though

they only differ in the name of a bound variable. We do not want this, and so we quotient Λ

by α-conversion, 1 i.e. the renaming of bound variables:

∀x, y ∈ V,∀s ∈ Λ, y /∈ fv(λx.s) =⇒ λx.s ≡ λy.s[y/x] (2.4)

We will take on faith that substitution s[t/x] is well-defined under α-conversion.

2.1.2 Reduction

struct VecU8 u = double vec(v); Given a binary relation R on Λ, we may define reduction

with respect to R, →R, as follows:

(s, t) ∈ R
s→R t

s→R s
′

Left
st→R s

′t

t→R t
′

Right
st→R st

′
s→R s

′

Abs
λx.s→R λx.s

′ (2.5)

We think of →R as defining a single step of reduction: we will denote the transitive and

reflexive closure of →R as �R, and the equivalence relation obtained by quotienting Λ by

→R as =R. We say a term is in R-normal form if ¬∃t ∈ Λ, s→R t, i.e. it cannot be reduced

further.

1In our actual implementation, we represent lambda terms by de-Bruijn indices, which automatically quo-
tient under α-conversion, but we will used the named formalism in our background exposition.

10



We can use this machinery to give a basic semantics to the lambda calculus by thinking

of abstractions λx.s as functions, which may be applied by substitution, via the β-reduction

relation below:

β = {((λx.s)t, s[t/x]) : x ∈ V, s, t ∈ Λ} (2.6)

It turns out that this is enough to give us a Turing-complete programming language, in which

terms are evaluated by reducing to β-normal form: we can encode arbitrary data structures

and control flow as functions in this calculus. As a very simple example, we may represent

the Boolean values true and false by “projection functions” as follows:

true ≡ λxy.x, false ≡ λxy.y =⇒ if ≡ λctf.ctf (2.7)

This recovers the usual control flow

if true l r �β l, if false l r �β r (2.8)

Unfortunately, not all “equal” functions (in the mathematical sense) are actually β-equal: as

a trivial example, we have

∀f ∈ V,∀s ∈ Λ, (λx.fx)s =β fs, but λx.fx 6=β f (2.9)

i.e. =β does not satisfy function extensionality. We’d like to automatically detect as many

such equalities as possible, but we need to worry about consistency : a reduction relation R

is inconsistent if

∀s, t ∈ Λ, s =R t (2.10)
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For example, we trivially have that β ∪ {(true, false)} is inconsistent, as

∀s, t ∈ Λ, true s t�β s, false s t�β t (2.11)

We will again take on faith that β is indeed consistent. It turns out that simply considering

all reductions of the form

η = {(λx.fx, f) : f ∈ V} (2.12)

yields a consistent relation βη = β ∪ η. Indeed, βη is actually maximally consistent : if s, t are

closed βη-normal terms then βη ∪ {(s, t)} is inconsistent [11], so, in a sense, it’s the best we

can do!

Another issue to consider is that not all terms have a β-normal form; for example,

Ω = (λx.xx)(λx.xx)→β Ω (2.13)

reduces to itself, and hence has no β-normal form. We call a term with an R-normal form

weakly R-normalizable. Some terms have a β-normal form, and yet do not necessarily reduce

to it; for example,

(λx.y)Ω→b y (2.14)

has a normal form, y, but we could also just infinitely reduce the Ω on the right. On the

other hand, a term which always reduces to a normal form after a finite number of steps is

called strongly R-normalizable.

In the following sections, we will discuss lambda calculi with “a notion of reduction” →,

to which rules will be added (such as, e.g., Equation 2.26). In reality, we are defining a notion
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of reduction R, to which these equations are added; we implicitly extend the definition of→R

to recursively consider components of expressions like (a, b). We will, in these cases, use = to

mean =R, with ≡ reserved as usual for syntactic equality.

2.2 Simple Types

In this section, we give an overview of the simply typed lambda calculus, and consider various

possible extensions to this theory, including substructural lambda calculi and the addition of

ground types and data structures, such as the natural numbers N or the tensor product ⊗.

This is probably the simplest example of a type system, and, consequently, is used as a basis

for much of modern research into type theory.

2.2.1 Simple Type Theory

We will now consider a simple type system for the lambda calculus, which we will later use as

a base to introduce features such as type dependency and sub-structural typing. We define

the set of simple types T over a set of atomic types A as follows:

A ∈ A
AtomicA ∈ T

A ∈ T B ∈ T
ArrowA( B ∈ T (2.15)

The arrow operator is right associative, i.e. A ( B ( C = A ( (B ( C). We define a

typing context Γ to be a multiset of assignments x : A of variables x ∈ V to types A ∈ T which

is consistent ; i.e., if x : A ∈ Γ and x : A′ ∈ Γ then A = A′. The catenation of two contexts,

Γ,∆ is defined if, as a multiset, it is consistent. We proceed to define typing judgements for
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terms s ∈ Λ of the form Γ ` x : A. We provide the following rules:

Varx : A ` x : A

Γ ` s : A( B ∆ ` t : A
AppΓ,∆ ` st : B

Γ, x : A ` s : B
AbsΓ ` λx.s : A( B (2.16)

Type-checking a simple term λxf.fx using these rules, we obtain deduction tree

Varx : A ` x : A Varf : A( B ` f : A( B
Appx : A, f : A( B ` fx : B

Absx : A ` λf.fx : (A( B)( B
Abs` λxf.fx : A( (A( B)( B (2.17)

The rules in Equation 2.16, however, are not complete: in their current form every term

appearing in a mapping Γ must be used exactly once: this is called a linear type system. This

means that functions which discard their arguments, like the projection λxy.x, or functions

which use them multiple times, like λfx.fxx, will not type-check! Such functions, in general,

are called nonlinear. Specifically

Definition 1 (Linear/affine/relevant terms). A term s ∈ Λ is called affine if every variable

in s is used at most once, and relevant if every term is used at least once. A term which is

both affine and relevant is called linear. A term which is not linear is nonlinear. Formally:

• ∀x ∈ V, x is both affine and relevant, i.e., linear

• Given s, t ∈ Λ,

– st is affine if s and t are both affine and fv(s) ∩ fv(t) = ∅.

– st is relevant if s and t are both relevant.

• Given s ∈ Λ,
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– λx.s is affine if s is affine

– λx.s is relevant if s is relevant and x ∈ fv(s)

We make the following claim

Claim 1. In the type system with only the rules given by Equation 2.16, if ` s : T for some

s, then s is linear.

If we want to allow discarding arguments (i.e., terms which are not necessarily relevant),

we must introduce a weakening rule, as follows:

Γ ` s : A
WeakeningΓ, x : B ` s : A (2.18)

This leaves us with an affine type system, where terms can be used at most once, and we can

now typecheck

Varx : A ` x : A
Weakeningx : A, y : B ` x : A
Absx : A ` λy.x : B( A
Abs` λxy.x : A( B( A (2.19)

In particular, we make the following claim

Claim 2. In the type system with only the rules given by Equations 2.16 and 2.18, if ` s : T

for some s, then s is affine.

On the other hand, if we want to allow duplicating arguments, we must introduce a

contraction rule, as follows:

Γ, x : A, x : A ` s : B
ContractionΓ, x : A ` s : B (2.20)
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and we can now typecheck

Varf : A( A( B ` f : A( A( B Varx : A ` x : A
Appf : A( A( B, x : A ` fx : A( B Varx : A ` x : A

Appf : A( A( B, x : A, x : A ` fxx : B
Contractionf : A( A( B, x : A ` fxx : B

Absf : A( A( B ` λx.fxx : A( B
Abs` λfx.fxx : (A( A( B)( A( B (2.21)

This leaves us with a relevant type system, where terms must be used at least once. In

particular, we make the following claim

Claim 3. In the type system with only the rules given by Equations 2.16 and 2.20, if ` s : T

for some s, then s is relevant.

If we introduce both Weakening and Contraction from Equations 2.18 and 2.20 respectively,

there is no restriction on how terms may be used, so we have an intuitionistic type system.

We will generally denote the arrow in an intuitionistic type system as → (rather than (). 2

2.2.2 Ground Types

In the untyped lambda calculus, we often encode datatypes, such as booleans and integers, as

pure functions, as we demonstrated for booleans in Section 2.1.2. While this remains possible

in a typed language, it is often practically more convenient to introduce a set of ground types,

such as bool and N. Each such type is introduced with a set of introduction rules, such as

true-introtrue : bool false-introfalse : bool 0-intro0 : N
n : N

succ-introsn : N (2.22)

2Note that in some works,( denotes the linear arrow, for which neither Weakening or Contraction hold, while
→ denotes the intuitionistic arrow, for which both hold. Here, however, ( means either the linear arrow,
affine arrow, relevant arrow, or intuitionistic arrow, while → continues to specifically denote the intuitionistic
arrow.
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where s is the successor operation, i.e. sn = n + 1. This allows us to define integer literals

such as 1 = s0, 2 = s1 = s(s0), and so on. Similarly, we can define eliminators such as

Γ ` b : bool ∆ ` t : A ∆ ` f : A
bool-elimΓ,∆ ` if b t f : A if true t f → t if false t f → f (2.23)

We could follow a similar approach for N (and, in Section 2.3.8, we will), or, alternatively, we

could define a collection of builtin operators, such as + : N→ N→ N or ==: N→ N→ bool,

and associated reduction rules.

2.2.3 Product Types

We may also want to add in additional types corresponding to common data structures, such

as tuples of elements. To do so, we may add more structure to T by introducing additional

type formers, such as the tensor product of types A and B, A⊗B, which has typing rules

A ∈ T B ∈ T
⊗-formA⊗B ∈ T

Γ ` a : A ∆ ` b : B
⊗-introΓ,∆ ` (a, b) : A⊗B (2.24)

Γ ` e : A×B ∆, a : A, b : B ` c : C
⊗-elimΓ,∆ ` let (a, b) = e in c : C (2.25)

and reduction rule

let (a′, b′) = (a, b) in c → c[a/a′][b/b′] (2.26)

This lets us define, for example, the tensor product of morphisms internally as follows:

∀f : A→ C, g : B → D, f ⊗ g = λe.let (a, b) = e in (fa, fb) : A⊗B → C ⊗D (2.27)
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However, if we define the usual projection operators as follows

∀i ∈ {1, 2}, πi ≡ λe.let (x1, x2) = e in xi (2.28)

we require Weakening to derive the expected type

Vare : A1 ×A2 ` e : A1 ⊗A2

Varxi : Ai ` xi : Ai
Weakeningx1 : A1, x2 : A2 ` xi : Ai
⊗-elime : A1 ⊗A2 ` let (x1, x2) = e in xi : Ai

Abs` πi : A1 ×A2 → Ai (2.29)

and, from this, the expected typing rules

····
` πi : A1 ×A2 → Ai Γ ` e : A1 ×A2

AppΓ ` πie : Ai (2.30)

Alternatively, we may introduce a conjunction type equipped with projection operators

A ∈ T B ∈ T
&-formA&B ∈ T

Γ ` a : A Γ ` b : B
&-introsΓ,∆ ` (a, b) : A&B

Γ ` e : A1&B2
&-elimΓ ` πie : Ai (2.31)

In this case, we could define 3

λef.let (a, b) = e in fab ≡ λef.f(π1e)(π2e) (2.32)

3We could directly implement Equation 2.26 by taking let (a, b) = e in c ≡ c[π1e/a][π2e/b], but this would
require some lemmas on typing subterms. In general, we can get the same behaviour using Equation 2.32
by writing (λef.let (a, b) = e in fab)(λab.c), and this actually has the type of a (categorical) eliminator for a
Cartesian product.
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we require Contraction to derive the expected type

Vare : A&B ` e : A&B
&-elime : A&B ` π1e : A

Appe : A&B, f : A→ B → C ` f(π1e) : B → C

Vare : A&B ` e : A&B
&-elime : A&B ` π2e : B
Appe : A&B, e : A&B, f : A→ B → C ` f(π1e)(π2e) : C

Contractione : A&B, f : A→ B → C ` f(π1e)(π2e) : C
Abse : A&B ` λf.f(π1e)(π2e) : (A→ B → C)→ C
Abs` λef.f(π1e)(π2e) : (A&B)→ (A→ B → C)→ C (2.33)

Hence, in intuitionistic logic, & and ⊗ are “the same thing” (i.e., isomorphic); we hence write

both as the Cartesian product ×.

2.2.4 Coproduct Types

Similarly, given types A + B, we may define their coproduct, or sum, A + B, to have typing

rules

A ∈ T B ∈ T
+-formA+B ∈ T

Γ ` a : A
inl-introΓ ` l a : A+B

Γ ` b : B
inr-introΓ ` r b : A+B (2.34)

We interpret this type as being “either A or B;” consequently, we may introduce eliminator

Γ ` e : A+B ∆, a : A ` ca : C ∆, b : B ` cb : C
+-elimΓ,∆ ` case+ e {l a 7→ ca r b 7→ cb} : C (2.35)

with rules

case+ (l a′) {l a 7→ ca r b 7→ cb} = ca[a
′/a], (2.36)

case+ (r b′){l a 7→ ca r b 7→ cb} = cb[b
′/b] (2.37)
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This gives us a basic system of algebraic data types, though we postpone a discussion of

inductive types to Section 2.3.

2.2.5 Linear and Nonlinear Type Theory

In a linear type system, we check linearity via the properties of the typing context. Of course,

we may have certain types, such as bool, for example, which we do not want to be linear; for

these particular types, we could introduce contraction rules and weakening rules as follows:

Γ, x : bool, x : bool ` s : A
bool-cntrΓ, x : bool ` s : A

Γ ` s : A
bool-weakΓ, x : bool ` s : A (2.38)

We could instead make a type, e.g., affine but not relevant, by only including Contraction but

not Weakening, or vice versa. In general, we may also be interested in what objects we could

define should the linearity restriction be lifted for a certain object or function argument, or

perhaps some portion of a data structure (e.g., the left argument of a tuple); to do so, we can

introduce the exponential type

Γ, x : A ` s : B
exp-introΓ, x :!A ` s : B

Γ, x :!A, x :!A ` s : B
exp-cntrΓ, x :!A ` s : B

Γ ` s : B
exp-weakΓ, x :!A ` s : B

(2.39)

Now, for example, we could make true and false to be intuitionistic by defining, e.g., true :!bool,

but still allowing other terms in the same type to be linear. Indeed, we can use the exponential

to derive an embedded version of intuitionistic type theory inside linear type theory by using

the Girard encoding

A→ B ≡!A( B (2.40)
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Similarly, we could define a Cartesian product

A×B ≡!(A&B) (2.41)

and so on.

Instead of introducing an exponential type, we could also consider a type system with sep-

arate intuitionistic and linear contexts equipped with functors F,G, which take intuitionistic

terms and types into linear terms and types, and vice versa (with separate linear type formers

⊗, ×, etc., and intuitionistic type formers ×, etc.). This approach is Benton’s linear/non-

linear calculus [3], which Krishnaswami et al. extend to support type dependency in the

intuitionistic function space [12].

Alternatively, we could define linearity on the arrow (resp. affinity/relevancy), by, in an

intuitionistic type system, admitting the type A( B for 1-linear functions f : A→ B, with

a 1-linear function defined as follows

Definition 2 (Linear/relevant/affine term). Given a variable x, a term s ∈ Λ is relevant in

x if x appears at least once in s, i.e. x ∈ fv(s), and affine in x if x appears at most once in

s. A term s is linear in x if it is both affine and relevant in x, i.e. uses x exactly once. A

function f is n-affine if it uses its nth argument at most once, and n-relevant if it uses it’s

argument at least once; if f is both affine and relevant, i.e., uses it’s argument exactly once,

we call it n-linear.

In particular, given a variable x, we provide the following mutually inductive definition:

• For all variables y, y is affine in x, and is both an n-affine and n-relevant function for

any n.
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• A lambda function λy.s (assuming y 6= x, renaming as necessary) is

– affine in x if s is affine in x

– 1-affine if s is affine in y

– 1-relevant if s is relevant in y

– n+ 1-affine if s is n-affine

– n+ 1-relevant if s is n-relevant

• An application st is

– affine in x if

∗ s is an affine function, and is 1-affine in x.

∗ t is affine in x.

∗ x /∈ fv(s) ∩ fv(t).

– n-affine if s is n+ 1-affine

– n-relevant if s is n+ 1-relevant

Note that a term s is linear/affine/relevant w.r.t. Definition 1 if

• For all n, s is n-linear/affine/relevant

• For all x ∈ fv(s), s is linear/affine/relevant in x

This is the approach used by Linear Haskell [4]. One advantage of this approach is that

our typing judgments become easier to work with, as intuitionistic rules mean we do not need

to worry about resource management while performing deductions, linearity instead being

a separate syntactic check. This approach also makes it easier to mix linear and nonlinear

22



functions. On the other hand, dealing with linearity in a particular index (e.g., 5-linearity)

can be challenging. Our type system in Chapter 3 will use a combination of these approaches.

2.2.6 Intuitionistic Conventions

In an intuitionistic setting, we will apply rules such as Var, Weakening, and Contraction implicitly

except when we want to explicitly demonstrate their necessity. We will also tend to express

typing rules using only one typing context. For example, we would express App as

Γ ` s : A→ B Γ ` t : A
App-intΓ ` st : B (2.42)

This is equivalent to the original rule in Equation 2.16, as we have

Γ ` s : A→ B Γ ` t : A
AppΓ,Γ ` st : B

Contraction...

Γ ` st : B

Γ ` s : A→ B
Weakening...

Γ,∆ ` s : A→ B

∆ ` t : A
Weakening...

Γ,∆ ` t : A
App-intΓ,∆ ` st : B (2.43)

2.3 Dependent Types

Type dependency, or allowing types to depend on terms, enables programmers to give precise

functional specifications of a program’s behavior in its type signature. As an example, consider

a function f : N → [N], where [A] denotes the type of lists of elements of A. We may know

that, say, the length of the list f(n) is always 2n + 3, but there’s no real way to encode

that in the type signature of the function. Consequently, we may have to include many

unnecessary length checks in our code, impacting performance, or face the possibility of bugs

or even undefined behavior. However, with type dependency, we can address this problem
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by simply giving f the dependent function type Πn : N.[N; 2n + 3], where [A;n] is the type

of arrays of length n. In this section, we will give a description of the Calculus of Inductive

Constructions, a dependently typed lambda calculus extended with inductive types, which

give a general formalism for the data types described in Section 2.2.

2.3.1 Typing Universes

Rather than introduce a set of atomic type variables, we instead introduce a family of universe

types Ui for i ∈ N, with typing rule

U-form` Ui : Ui+1 (2.44)

Unfortunately, we cannot introduce just a single typing universe U : U (i.e., “type in type”),

as due to Girard’s paradox, this would allow us to produce, for any type A, a term ⊥ : A

(i.e., an infinite loop), which would lead to our type theory’s interpretation as a logic via the

Curry-Howard correspondence (see Subsection 2.3.6) to be inconsistent (as we could provide

a “proof” of every proposition, though it would be non-normalizing) [5].

We will consider any term A : Ui to be a valid type, and hence allow typing judgements

of the form a : A (i.e., we assume Russell-style typing universes). Since we want to emulate

the U : U case as closely as possible (while still maintaining consistency), we want A : Ui to

imply A : Ui+1; while this is often simply introduced as a single rule (e.g., in [18]) , we will

instead introduce a subtyping judgement A <: B with rules

A <: A Ui <: Ui+1

A <: B a : A

a : B (2.45)
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In spirit, A <: B means “anything with type A can be substituted anywhere we expect a

term with type B.”

Alternatively, we could use Tarski-style universes, in which A : Ui is not a valid type but

rather corresponds to a type Eli(A), recovering a strict separation between types and terms.

In this case, we could introduce functions ji : Ui → Ui+1 with Eli(A) = Eli+1(jiA)

2.3.2 Dependent Function Types

We can now introduce the dependent function type, or Π-type,

Γ ` A : Ui ∆, x : A ` B : Ui
Π-formΓ ` Πx : A, V : Ui (2.46)

We then provide introduction and elimination rules

Γ ` s : B
Π-introΓ ` λx.s : Πx : A.B

Γ ` s : Πx : A.B Γ ` t : A
Π-elimΓ ` st : B[t/x] (2.47)

Note this allows us to reinterpret the intuitionistic arrow A → B as shorthand for the de-

pendent function type Π− : A.B; in this case, the rules Abs and App from Equation 2.47

correspond exactly to the simply typed ones in Equation 2.16. We can now, for example, type

the polymorphic identity function λA.λx.x as follows:

A : Ui, x : A ` x : A
Π-introsA : Ui ` λx.x : A→ A

Π-intros` λA.λx.x : ΠA : Ui.A→ A (2.48)
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2.3.3 Subtyping and Variance

As an element of a dependent function type f : Πx : A.B takes an argument a of type A, and

returns a result of type B[a/x], it follows that if A′ <: A, we should be able to replace f with

a function of type g : Π : x : A′.B. This yields rule

A′ <: A

Πx : A.B <: Πx : A′.B (2.49)

Note that this judgement “flips” the order of the subtyping relation; hence, the argument type

parameter of the type former Π is called contravariant.Conversely, assuming that B <: B′

implies that B[a/x] <: B′[a/x] (a property that we will not prove for this type system), then

we could also replace f with a function of type g : Πx : A.B′ to get a result of type B′[a/x]

(which, via subtyping, we may assume can be interpreted as a term of type B[a/x]). This

yields rule
B <: B′

Πx : A.B <: Πx : A.B′ (2.50)

Here the order of the subtyping relation is preserved; hence, the result type parameter of the

type former Π is covariant. On the other hand, if we defined a type former Id A ≡ A→ A, A

appears in both a contravariant (the left) and covariant (the right) position; hence, for us to

have Id A <: Id B, we would require A <: B and B <: A, i.e., that A and B were equivalent

when considered as types. Such a parameter is called invariant.

2.3.4 Booleans

In the Section 2.3.2, we defined Π-types as dependent analogs to the simple function type

A → B; similarly, we may define dependent analogs of Section 2.2’s ground types and data
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types as follows. For example, as in Section 2.2.2, we may introduce a type of booleans

bool-form` bool : U1
true-intro` true : bool false-intro` false : bool (2.51)

We introduce pattern matching via the case statement

Γ ` F : bool→ Ui Γ ` t : F true Γ ` f : F false Γ ` b : bool
bool-elimΓ ` casebool b {true 7→ t, false 7→ f} : F b (2.52)

having reduction rules

casebool true {true 7→ t, false 7→ f} → t casebool false {true 7→ t, false 7→ f} → f (2.53)

Notice that, unlike the if-statement from Section 2.2.2, this allows the type of the true and

false branches to differ, e.g., the following term typechecks

λx.casebool x


true 7→ true,

false 7→ λx.x


: Πx : bool.casebool x (λ− .U1)


true 7→ bool,

false 7→ bool→ bool

 (2.54)

As demonstrated above, we may recover the original if-statement behaviour by setting F to

be a constant function λ− .A for some A : Ui. We may hence define

if b t f ≡ case b {true 7→ t, false 7→ f} (2.55)
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Logical operations may then be defined in the obvious manner, e.g.

not ≡ λx.if x false true : bool→ bool (2.56)

and ≡ λxy.if x y false : bool→ bool→ bool (2.57)

or ≡ λxy.if x true y : bool→ bool→ bool (2.58)

2.3.5 Dependent Pair Types

Similarly, we may define Σ-types as dependent analogs to the Cartesian product type A×B

from Section 2.2.3. In particular, we introduce typing rules

Γ ` A : Ui Γ, x : A ` B : Ui
Σ-formΓ ` Σx : A.B : Ui

Γ ` a : A Γ ` b : B[a/x]
Σ-introΓ ` (a, b) : Σx : A.B (2.59)

with eliminator

Γ ` F : Σx : A.B → Ui Γ ` e : Σx : A.B Γ, a : A, b : B[a/x] ` c : F (a, b)
Σ-elimΓ ` caseΣ e {(a, b) 7→ c} : F e (2.60)

having reduction rule

caseΣ (a′, b′) {(a, b) 7→ c} → c[a′/a][b′/b] (2.61)

Note this is, in essence, the let-statement from Section 2.2.3 if we choose F = λ− .A for some

constant A : Ui; as a consequence, we may define

let (a, b) = e in c ≡ caseΣ e {(a, b) 7→ c} (2.62)
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We may hence define the Cartesian product eliminators π1, π2 in the usual manner as in

Section 2.2.3, i.e., using Equation 2.28. Their typing derivations, however, are different; in

particular, we have

Γ ` λ− .A : Σx : A.B → Ui Γ, a : A ` a : A
Σ-elimΓ, e : Σx : A.B ` let (a, b) = e in a : A
Π-introΓ ` π1 ≡ λe.let (a, b) = e in a : Σx : A.B → A (2.63)

Γ ` π1 : Σx : A.B → Ui Γ, a : A, b : B[a/x] ` b : B[π1(a, b)/x]
Σ-elimΓ, e : Σx : A.B ` let (a, b) = b in a : A

Π-introΓ ` π1 ≡ λe.let (a, b) = e in a : Σx : A.B → A (2.64)

Hence, as in Section 2.3.2, we may define A × B ≡ Σ− : A.B to get the usual intuitionistic

typing rule for the Cartesian product. Similarly, we may define a coproduct type A+B as

A+B ≡ Σb : bool.if b A B, l ≡ λl.(true, l) r ≡ λr.(false, r) (2.65)

with the case+-statement from Section 2.2.4 defined by

case+ e {r a 7→ ca, l b 7→ cb} ≡ caseΣ e {(x, v) 7→ (if x (λa.ca) (λb.cb)) v} (2.66)

with typing derivation

Γ ` e : A+B

Γ ` F : A+B → Ui

Γ, a : A ` ca : F(l a)

Γ ` λa.ca : Πa : A.F (l a)

Γ, b : B ` cb : F(r b)

Γ ` λb.cb : Πb : B.F (r b)

Γ, x : bool ` if x (λa.ca) (λb.cb) : if x (Πa : A.F (l a)) (Πb : B.F (r b))

Γ, x : bool, v : if x A B ` (if x (λa.ca) (λb.cb)) v : F (x, v)

Γ ` caseΣ e {(x, v) 7→ (if x (λa.ca) (λb.cb)) v} : F e

(2.67)

Choosing F ≡ λ− .C gives an intuitionistic form of the elimination rule in Equation 2.35.
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2.3.6 Identity Types

While dependent type theory is already powerful with Σ,Π, and ground types, we still cannot

really express many propositions like “x is even.” To do so, we can introduce the identity type

IdA x y for terms x, y : A, with typing rules

Γ ` A : Ui
Id-formΓ ` IdA : A→ A→ Ui

Γ ` a : A
Id-introΓ ` reflA a : IdA a a (2.68)

We will leave the type A out when it is clear from the context, writing, e.g., Id instead of IdA.

We view elements of IdA x y as evidence that x = y; the single constructor reflA represents

the axiom that, for any a : A, a = a, and therefore we can produce an element reflA a : IdA a a.

This seems useless, as we already know that a = a, but becomes useful when it interacts with

other axioms. For example, say we wanted to prove that “for all b in bool, either b = true or

b = false.” If we had such a proof, then given b, we would have evidence that either b = true

or b = false. If we translate “evidence that a = b” as IdA a b, “either P or Q” as P +Q, and

“given x : A, P” as Πx : A.P , we can interpret a term of type

Πb : bool.Id b true + Id b false (2.69)

as such a proof. And indeed, we may construct such a term, hence proving this fact, as
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follows:

...

` λx.Id x true + Id x false : bool→ U1

...

` inl (refl true) : Id true true + Id true false

...

` inr (refl false) : Id false true + Id false false

b : bool ` if b (inl (refl true)) (inr (refl false)) : bool.Id b true + Id b false

` D ≡ λb.if b (inl (refl true)) (inr (refl false)) : Πb : bool.Id b true + Id b false (2.70)

The interesting thing about this proof is that it’s computationally relevant, i.e., it not only

states that a fact is true, but carries data regarding the truth of the fact. In this case, for

example, we can take

π1 : Id b true + Id b false→ bool (2.71)

to extract a simple Boolean value telling us whether we have b = true or b = false; we could

then prove, e.g., that

∀b ∈ bool, π1D = b (2.72)

i.e., construct a term

P : Πb : bool.Id (π1D) b (2.73)

In this sense, inhabitants of a type become proofs of a proposition, and proofs of a proposi-

tion become inhabitants of a type, i.e., we interpret propositions as types (and vice versa).

Taking this analogy further, we can interpret, e.g., Σ-types Σx : A.P as existential quantifiers

∃x ∈ A.P (“a term x, along with evidence that P holds”), × as logical conjunction, → as

implication, and so on.

Unfortunately, with the tools we have so far, we lack the tools to use the propositions we
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can prove either in other propositions or in programs. For example, given x = y, we have no

way to conclude that f(x) = f(y) (i.e., applicativity). To remedy this situation, we introduce

path induction, with the following typing rules

Γ ` D : Πxy : A.IdA x y → Ui Γ ` p : IdA x y Γ, a : A ` d : D a a reflA a
Id-elimΓ ` caseIdA p {reflA a 7→ d} : D x y p (2.74)

This, in essence, says that “anything we can do with a : A and a proof that a = a we can do

with x, y : A and a proof that x = y.” This allows us to prove, e.g., applicativity, as follows

····
Γ, f : A→ B ` D : Πxy : A.IdA x y → Ui

Γ, f : A→ B, a : A ` f a : B

Γ, f : A→ B, a : A ` reflB f(a) : IdB (f a) (f a)

Γ, f : A→ B, x : A, y : A, p : IdB x y ` caseIdA p {reflA a 7→ reflB (f a)} : IdB (f x) (f y)

Γ ` λfxyp.caseIdA p {reflA a 7→ reflB f(a)} : Πf : A→ B.Πxy : A.IdA x y → IdB (f x) (f y)

(2.75)

where D ≡ λxyp.IdB (f x) (f y). We complete our analogy between propositions and types

by providing a type representing truth >, the unit type 1, and falsity ⊥, the empty type 0,

with the following rules

0 : U1 1 : U1 () : 1 (2.76)

The unit type has eliminator

Γ;C ` F : 1→ Ui Γ;C ` d : F () Γ;C ` u : 1

Γ;C ` case1 i {() 7→ d} : F () (2.77)

with reduction rule

case1 i {() 7→ d} → d (2.78)

In particular, anything which is true for it’s single element () is (obviously) true for the entire
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Set Theory Lambda Calculus

∀x ∈ A.P Πx : A.P

∃x ∈ A.P Σx : A.P

P =⇒ Q P → Q

P ∧Q P ×Q
P ∨Q P +Q

a = b IdA a b

⊥ 0

> 1

¬P P → 0

Figure 2.1: The correspondence between set-theoretic propositions and type-theoretic types.

type. On the other hand, the empty type has the interesting eliminator

Γ;C ` F : 0→ Ui Γ;C ` c : 0

Γ;C ` case0 c {} : T c (2.79)

Note there are no cases to handle, since there is no way to construct an element of 0. There

also is not a reduction rule, since if we have a closed term of this form, something’s gone

wrong! This represents the principle of explosion: if we can conclude ⊥, we can conclude

anything (here, any type T , as we can simply define F = λ− .T ). This also allows us to define

negation: as ¬P ⇐⇒ P =⇒ ⊥, we can define the negation of a type A to be the function

type A → 0; in particular, this implies that if we can prove A, we can prove anything. The

entire correspondence we described is given in Figure 2.1.

2.3.7 Natural Numbers

We now want to inductive types and recursive functions on these types. We will begin with

the canonical example of the natural numbers N : U1. We provide the following typing rules,
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as in Section 2.2.2:

N-form` N : U1
0-intro` 0 : N

Γ ` n : N
s-introΓ ` s n : N (2.80)

As usual, we provide an eliminator with a case for each rule

Γ ` F : N→ Ui Γ ` n : N Γ ` z : F (0) Γ, n′ : N ` s : F (sn′)
N-elim

Γ ` caseN F n {0 7→ z, s n′ 7→ s} : F (n) (2.81)

with the reduction rules

caseN F 0 {0 7→ z, s n′ 7→ s} → z (2.82)

caseN F (sn) {0 7→ z, s n′ 7→ s} → s[n/n′] (2.83)

In general, when F is clear from the context (e.g., the constant function F = λ− .N), we may

leave it out, giving syntax

caseN n {0 7→ −, s n′ 7→ s} (2.84)

We can now define, e.g., a predecessor function

λn.caseN n {0 7→ 0, s n 7→ n} (2.85)

Unfortunately, the tools we currently have are not enough to define arithmetic operations,

such as addition. For that, we have to introduce fixpoints.
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2.3.8 Fixpoints

To be able to define recursive functions, we introduce fixpoints, with the following definition:

Definition 3 (Fixpoint Definition). Given symbols f1, ..., fn and terms F1, ..., Fn, we define

a fixpoint definition to be an expression of the form Fix([fj : Fj = Dj ]), which we will view as

mutually recursively defining each symbol fj of type Fj in terms of the other symbols fk. For

a fixpoint definition F , we introduce terms F :: fj corresponding to each symbol fj. Where

there is no risk of confusion, we will write fj to mean F :: fj.

Naively, we would introduce the following typing rule

(Γ, (fi : Fi)i ` Dj : Fj)j

Γ ` Fix([fj : Fj = Dj ]) :: fk : Fk (2.86)

in short, “assuming each symbol fi is of type Fi, if each definition Dj is of type Fj in Γ,

then the recursive definition fj : Fj = Dj in terms of {f1, ..., fn} is valid.” We introduce the

obvious reduction rule

Fix([fj : Fj = Dj ]) :: fi → Di[Fix([fj : Fj = Dj ])fj/fj ]j (2.87)

Unfortunately, this makes all but the most trivial fixpoints no longer strongly normalizing, as

we can simply “unfold” their definitions an arbitrary number of times. This is usually handled

by introducing an explicit reduction discipline (to avoid infinite loops when checking terms

for equality), such as, e.g., only unfolding full recursive calls to functions on closed terms.

This is mainly, however, an implementation detail, and hence out of the scope of this section.
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We may now define arithmetic operators inductively; for example, addition is given by

Fix([add = λnm.caseN m {0 7→ n, s m 7→ s(add n m)}]) (2.88)

i.e. “to add m to n, add 1 to n m times.” When fully applied, this reduces as expeced, e.g.

add 2 2→ s(add 1 2)→ s(s(add 0 2))→ s(s(2)) ≡ 4 (2.89)

Similarly, we may perform proofs by induction; for example, we may perform the following

inductive proof:

Claim 4. ∀n.add 0 n = n

Proof. Define the proposition P (n) = [0 + n = n]. We have

• 0 + 0 = 0, and hence P (0).

• By definition, 0 + s n = s (0 + n). Assuming P (n), we have s(0 + n) = sn, and hence by

transitivity we have P (sn)

Hence, by induction ∀n ∈ N, P (n).

Translating this into dependent type theory, we could write

Fix([leftunit : Πn : N.IdN (add 0 n) n =

λn.caseN n {0 7→ n, s m 7→ transN (reflN (add 0 (s m)) (leftunit n)}]) (2.90)

Here, the base case is represented by the 0 branch of the case-statement, while the inductive
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case is represented by the sm branch, with the use of the inductive hypothesis represented by

the recursive call to leftunit.

Unfortunately, this naive theory is a little too powerful: we could easily define, e.g., an

element of 0

Fix([Ω : 0 = Ω]) (2.91)

In other words, the logic defined in 2.3.6 becomes inconsistent. For most practical uses, this

is actually fine, as dependent type theoy is used as a programming language, rather than a

logic. If we want to give a specification of our programs in dependent type theory, however,

this is disastrous, as we can now simply prove false specifications.

It turns out, however, that we can identify inconsistent terms, such as that given in

Equation 2.91, with nonterminating terms [2]. In particular, we give reduction rules

Definition 4 (Terminating). We say a term s is terminating if there exists n such that, for

any closed, normalized terms t1, ..., tn, s t1 ... tn is normalizable.

Definitions like Equation 2.91 are then ruled out as, like in Equation 2.13, the only possible

reduction is Ω→ Ω, as would nonterminating functions like

Fix([ω : N→ 0 = λn.ω n]) (2.92)

Unfortunately, it turns out that checking whether a term is terminating or not is, in general,

undecidable, as it reduces to the Halting Problem. However, it is possible to define a conser-

vative check which, while rejecting some terminating programs as well, successfully rejects all

nonterminating programs. In particular, we could restrict our attention to primitive recursive

definitions, which, in essence, only allow recursive calls on arguments derived unchanged from
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case statements (this always terminates, since such terms always have a constructor removed,

and a term can only have a finite number of constructors to remove). For example; add is

primitive recursive, though

Fix([halfadd = λnm.caseN m {0 7→ n, s m 7→ caseN m {0 7→ n, s m 7→ s(halfadd 0 m)}}])

(2.93)

is not, though both terminate, as the latter strips off two s per recursive call. To accomodate

this case, we can allow structurally recursive definitions, which allow stripping off multiple

constructors in one go; it is possible to generalize this to mutual structural recursion, allowing

mutually recursive fixpoints. Agda uses this strategy [2], which is described in the paper [1].

Alternatively, we could emulate Coq and use a strategy based off guarded fixpoints, which

admits all structurally recursive definitions (and hence, all primitively recursive definitions)

[17].

We will not describe on a particular termination checker, but rather assume that we are

given one which recognizes at least all cases of primitive recursion, and will only consider a

fixpoint well-defined if it passes the termination checker. We write the resulting rule as, for

F ≡ Fix([fj : Fj = Dj ]),

(Γ, (fi : Fi)i ` Dj : Fj)j Γ ` F terminating

Γ;C ` F :: fk : Fk (2.94)

where the termination checker used is provided F and Γ as arguments.
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2.3.9 Inductive Types

So far, we have introduced a hodgepodge of types, such as IdA, N, and bool. It turns out, we

may define all these types via the more primitive concept of an inductive type. In this section,

we present a formalism for inductive types using the Calculus of Inductive Constructions

(CoC), which is the basis of the theorem provers Coq [17] and Agda [14]agda-ref, derived

from the Coq reference manual [17]. We begin with a naive definition

Definition 5 (Inductive Definition). An inductive definition is an expression of the form

Ind(ΓI := ΓC) (2.95)

where ΓI = [Ij : Aj ],ΓC = [cjk : Cjk] are sets of type bindings such that each Aj is an arity

and each Cjk is a type of constructor for Ij.

Each such definition introduces a set of inductive type families I1, ..., Ij , which may be

defined in terms of themselves, similarly to a fixpoint. An arity is simply the type of a family

of types, i.e. a function Πa : A.Πb.B. ... Ui, while a type of constructor is a valid type for a

constructor for some member of a type family. More formally:

Definition 6 (Type of constructor). If I is a variable, we say that C is a type of constructor

of I with parameters paramsI(C) if

• C = I t1 ... tn; in this case we define paramsI(C) = []

• C = Πx : U.V where V is a type of constructor of I; in this case we define

paramsI(C) = U : paramsI(V ) (2.96)
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For example, ΠA : Ui.Πx : IA.Πa : A.IA is a type of constructor, with

paramsI(ΠA : Ui.Πx : IA.Πa : A.IA)

= A : paramsI(Πx : IA.Πa : A.IA)

= A : (IA) : paramsI(Πa : A.IA)

= A : (IA) : A : paramsI(IA)

= [A, IA,A] (2.97)

while Ui → I → Ui is not a type of constructor for I, as the output is not a member of the

type family I.

Definition 7 (Arity). A type T is an arity of sort Ui if

• T = Ui

• T = Πx : U.V where U is an arity of sort Ui

A type T is an arity if there exists a universe Ui such that T is an arity of sort Ui.

For example, A→ U2 and U2 are arities of sort U2 while A→ B → U3 is an arity of sort U3,

while ΠA : Ui.A → A is not an arity, since the output is not contained in a typing universe

Ui.

Unfortunately, as with fixpoints, a naive definition of inductive types opens the door to

contradictions. While we will not give a detailed example, this has to do with Cantor’s

paradox [17]: in particular, consider the inductive definition

Ind([cantor : U1] := [power : (cantor→ bool)→ cantor, base : cantor]) (2.98)
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Interpreting this naively as an inductive definition of a set, we would require that the set

of terms of type cantor contained all functions cantor → bool, which is impossible, as the

cardinality of this set is that of the power set of cantor (which, by Cantor’s theorem, is strictly

larger than the cardinality of cantor). Thankfully, we can avoid such cardinality troubles by

introducing the somewhat abstract notion of strict positivity :

Definition 8 (Strict Positivity). Let T be a dependent type. We say T satisfies the positivity

condition for a variable X if

• T = X t1 ... tn where ∀i,X /∈ fv(ti)

• T = Πx : U.V and

– X occurs strictly positively in U

– V satisfies the positivity condition for X

We say X occurs strictly positively in T if

• X /∈ fv(T )

• T = X t1 ... tn and ∀i,X /∈ fv(ti)

• T = Πx : U.V where X /∈ fv(U) and X occurs strictly positively in V .

• T = I a1 ... am t1 ... tp where

– ∀i,X /∈ fv(ti)

– I is an inductive definition of the form

Ind(I : A := [cj : Cj ]) (2.99)
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(in particular, is not mutually inductive and has m parameters) and

∗ ∀i = 1..p,X /∈ fv(ti)

∗ ∀j = 1..m,Cj [p1/a1]...[pm/am] satistfies the nested positivity condition for X.

If I is an inductive definition with m parameters, the type of constructor T satisfies the nested

positivity condition for a constant X if:

• T = I b1 ... bm u1 ... up and ∀i,X /∈ fv(ui)

• T = Πx : U.V , and

– X occurs strictly positively in U

– V satisfies the nested positivity condition for X

For example, X occurs strictly positively in N → X and (N → X) → X, but not in X → N

or (X → N) → X. It turns out that, as long as the types of constructor in our inductive

definition are restricted to being strictly positive in each inductively defined type, our theory

remains consistent [17]. We may hence define a well-formed inductive definition as follows:

Definition 9 (Well-formed Inductive Definition). We will say an inductive definition I ≡

Ind([Ij : Aj ] := [cjk : Cjk]) is well-formed in Γ if

• Each Aj is a type in Γ, i.e. ∃i,Γ ` Aj : Ui.

• Each Cjk is a type of constructor of Ij which satisfies the positivity condition for all

types in the definition I1, ..., IJ

• Each Aj is an arity of sort sj

• ∀j, k,Γ, I1 : A1, ..., IJ : AJ ` Cjk : sj
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We will write this judgement as

Γ ` I ok (2.100)

We introduce typing rules

Γ ` I ok
IndΓ ` I :: Ij : Aj

Γ ` I ok
ConsΓ ` I :: cjk : Cjk[I :: I`/I`]`=1..J (2.101)

When there is no risk of confusion, we will often omit judgements of the form Γ ` I ok and

write N for I ::N .

Using this definition, we may define the ground types we have previously seen as inductive

types as follows

Ind([0 : U1] := []) (2.102)

Ind([1 : U1] := [() : 1]) (2.103)

Ind([bool : U1] := [true : bool, false : bool]) (2.104)

Ind([Σx : A.B : Ui] := [(, ) : Πa : A.B.Σx : A.B]) (2.105)

Ind([N : U1] := [0 : N, s : N→ N]) (2.106)

Ind([Id : A→ A→ Ui] := [refl : Πa : A.Id A a a]) (2.107)

We can also use Ind to define propositions by giving the evidence these propositions contain.

For example, we can define “a ≤ b” to mean either evidence a = b, or evidence b ≡ s b′
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combined with evidence a ≤ b′, to get the predicate

Ind ([Le : N→ N→ U1] := [le : Πnm : N.Id n m→ Le n m, lts : Πnm : N.Lt n m→ Le n (sm)])

(2.108)

We can even define mutually inductive propositions such as

Ind


 even : N→ U1,

odd : N→ U1

 :=


even0 : even 0,

evenS : Πn : N.odd n→ even (sn)

oddS : Πn : N.even n→ odd (sn)



 (2.109)

i.e., “sn is even if n is odd and odd if n is even, and 0 is even.” We may also provide an

alternative definition of A+B as follows:

Ind([A+B : Ui] := [inl : A→ A+B, inr : B → A+B]) (2.110)

Unfortunately, these two definitions are not equated by the theory; for that, we’d require the

univalence axiom [18]. Hence, we will have to pick one (though, since they’re isomorphic,

it does not matter much, and conversion is trivial). We can derive computation rules in a

natural way:

Definition 10 (Pattern Matching). Given an inductive definition I = Ind([Ij : Aj ] := [cjk :

44



Cjk]), for each Ij, we define an case statement I :: caseIj with typing rule

Γ ` I ok

Γ ` i : I :: Ij

Γ ` F : I :: Ij → Ui

(Γ, (pn : Pn)n=1..Nk
;C ` rk : F (cjk p1 ... pNk

))k

caseΓ ` I :: caseIj i {(cjk p1 ... pNk
7→ rk)k} : F (i) (2.111)

where

Pk = paramI(Cjk), Nk = len(Pk)

We introduce reduction rules, for k = 1, ..., n,

I :: caseIj (I :: cjk a1 ... aNk
) {cj1 p1 ... pN1 7→ r1, ..., cjKj p1 ... pNKj

7→ rKj}

→ rk[an/pn]`=1,...,Nk
(2.112)

Where I is clear from the context, we may omit it.

This yields the usual rules for if ≡ casebool, caseN, caseΣ, and so on, as special cases.

2.4 The C Language

In this section, we will change gears from type theory and give a brief review of the C

programming language, along with some basic systems programming concepts, which we will

use later in the thesis. We begin with Section 2.4.1, in which we describe why we include C in

our background exposition and as the target language for the compilation algorithm Chapter
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4. In Section 2.4.2, we give a brief description of the C programming language and it’s basic

features, while in 2.4.3, we describe one of the major drawbacks of programming in C, namely,

undefined behaviour.

2.4.1 Why C

C serves as the prototypical example of a systems programming language, often being re-

ferred to as “portable assembly.” Indeed, rather than target an actual assembly language or

purpose-built intermediate representation such as LLVM, many compilers (including the orig-

inal implementations of Eiffel, C++, and Modula 3 [15]) opt to instead target C so as to be

able to generate high-performance, bare-metal code not dependent on any particular runtime

without needing to worry about complex platform and implementation-specific details such as

register allocation or instruction scheduling while taking advantage of the formidable devel-

opment effort spent on optimizing the compilation of C programs [15, 8]. Another advantage

of targeting C is the relative simplicity of explaining the target code a compiler produces

by simply presenting output in C, which is usually far easier to read than assembly or most

intermediate representations. Hence, while we decided C was not the best choice for an actual

implementation of isotope, we will use C to describe our compilation algorithm for simplicity

and ease of explanation.

2.4.2 C Basics

C is a statically-typed, procedural language, with a somewhat weak type discipline in which

most types can be freely cast to each other, often implicitly (having evolved from an untyped

language [15]). As C provides direct low-level access to computer memory through the use of

46



1 #include <stdio.h>

2

3 int main(void) {

4 puts("hello , world");

5 return 0;

6 }

Figure 2.2: As is traditional, a “hello, world” program in C

pointers, it is often beneficial to think of C types as simply a method of viewing a chunk of

memory with a given size (exposed by the sizeof expression) and alignment (exposed by the

alignof expression). This is the perspective we will adopt for most of this thesis.

C provides a small selection of builtin scalar types, such as int and long. Types can

be aliased using typedefs: for portability, we often instead use type definitions from the

standard library’s stddef.h, such as uint32 t (for an unsigned 32-bit integer), instead

of directly using C’s integer types (which may have different widths on different platforms).

Especially important is the type of bytes or characters, char. C also supports the construction

of compound record types (structs) and union types (unions) from these basic components,

as well as array types T[n]. C has a well defined ABI for each sort of type supported by the

language:

• Structs are guaranteed to lay out their fields in the order they are defined, with ap-

propriate padding between fields such that each field starts at an address with the

proper alignment. For example, assuming that, on a given platform, int had size 4 and

alignment 4, while short had size 2 and alignment 2, the struct

1 struct my_struct {

2 short first_field;

3 int second_field;
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4 };

would have size 8 and alignment 4, with first field taking up the first 2 bytes,

followed by 2 bytes of padding, and second field taking up the remaining 4 bytes.

• Unions are, in essence, simply a block of memory large enough to hold any of a collection

of type, which are all stored right at the front of the union. For example, assuming the

sizes and alignment for int and short given above, the union

1 union my_union {

2 short first_variant;

3 int second_variant;

4 };

would have size 4 and alignment 4, with first field taking up the first 2 bytes and

second field taking up the whole 4 bytes (and overlapping with first field)

• Arrays T[n] are simply blocks of memory large enough to hold n aligned copies of type

T; e.g., if T had size 16 and alignment 4, then T[4] would have size 64 and alignment 4.

On the other hand, if U had size 14 and alignment 8, then U[5] would have size 80 and

alignment 8; note that it must skip forwards by 16 bytes for every value of U (rather

than 14) since U has a size which is not divisible by it’s alignment.

Where C gets interesting is in it’s support for unrestricted manipulation of raw pointers

to memory. In particular, given any type T, we may construct a pointer type T∗ representing

a pointer to memory assumed to hold a value of type T, though this can be null (or otherwise

dangling) and point to invalid memory, or uninitialized, in which case writes are defined but

reads are not. We can dereference a pointer to get the value it points to, and we may perform
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1 #include <stdlib.h>

2 #include <string.h>

3

4 void memory_leak () {

5 char* memory = (char*) malloc (8192);

6 strcpy(

7 memory ,

8 "This memory is malloc ‘ed, but never free ‘d;\n"

9 "this is not incorrect , but does cause a memory leak!\n"

10 );

11 }

Figure 2.3: A C function which leaks some memory.

arithmetic operations on pointers too, for example, get the next address in memory. More

interestingly, we may cast pointers from one type to another, getting, in essence, “multiple

ways of viewing the same memory.”

Indeed, many of C’s operations are, under the hood, encoded as simple pointer manipu-

lations. For example, array indexing notation is actually syntax sugar for pointer arithmetic,

as in Figure 2.4. Similarly, heap allocations are exposed via raw pointers in C, with program-

mers required to perform manual memory management : dynamic memory allocations must

be explicitly made with a call to malloc, and then freed with a call to free. If this latter step

is omitted, as in Figure 2.3, the program has a memory leak ; this is not necessarily a bug, but

can cause the program’s memory to continually grow over time and could eventually cause

the host system to run out of RAM). More dangerous is when memory is accessed after being

free’d, or read before being initialized, or free’d twice, as these situations trigger undefined

behaviour.
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1 int array_sugared () {

2 int array [5] = {1, 2, 3, 4, 5};

3 return array [3];

4 }

5

6 int array_desugared () {

7 int array [5] = {1, 2, 3, 4, 5};

8 return *( array + 3);

9 }

10

11 int strange_sugared () {

12 int array [5] = {1, 2, 3, 4, 5};

13 return 3[ array];

14 }

15

16 int strange_desugared () {

17 int array [5] = {1, 2, 3, 4, 5};

18 return *(3 + array);

19 }

Figure 2.4: The function array sugared desugars to array desugared, and is equivalent
to strange sugared (which desugars to strange desugared), since i[j] is actually just
syntax sugar for *(i + j) and hence is (unexpectedly) commutative.

2.4.3 Undefined Behaviour

While the low level control over memory layout and contents that C provides is powerful, as

we will see, it is also dangerous, as we can easily trigger undefined behaviour (UB), oftentimes

without any warning from the compiler. Undefined behaviour is an especially worrisome class

of bug, as it means that the compiler is theoretically unconstrained in what it can output [7]. In

particular, the compiler can choose one day to output exactly the program you intended, while

another day, on another platform, it can write out a program which deletes your hard drive.

Hence, UB tends to lead to particularly insidious bugs, which appear nondeterministically

on only some platforms (hindering reproducibility) and in seemingly illogical places (e.g.,

impossible behaviour being caused by undefined behaviour in a completely separate source

file due to an incorrect compiler optimization). The situation is made dire by the fact that
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even state-of-the art C compilers, such as clang, will often fail to warn users even obvious

cases of undefined behaviour, even at the highest warning levels. Coupled with the fact that

nearly every operation in C involves pointers, and hence has a high chance of risking UB (not

to mention that even seemingly innocuous operations, such as signed integer overflow, are

actually technically UB according to the C standard [7]), memory safety bugs pose a serious

challenge for maintaining code correctness and security.

As a trivial example of UB, consider the (contrived) code in Figure 2.5, in which a pointer

to a stack variable char x is returned by the function dangling return and subsequently

dereferenced.

1 char* dangling_return(char x) {

2 return &x;

3 }

4

5 char deref_dangling(char x) {

6 // Undefined behaviour: dereferencing a dangling pointer!

7 return *dangling_return(x);

8 }

Figure 2.5: Code which triggers UB due to dereferencing a dangling pointer

When we give this program as input to clang (version 11.0.0-2, with flags -Wall, -Wpedantic),

we get the following encouraging warning:

dangling-return.c:2:13: warning: address of stack memory associated with parameter

’x’ returned [-Wreturn-stack-address]

return &x;
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^

1 warning generated.

Unfortunately, this is a particularly simple case of undefined behaviour to detect. If we

attempt to, instead of using memory which has just been popped from the stack, use memory

which has just been freed, as in the following code

1 #include <stdlib.h>

2

3 int use_after_free(int my_value) {

4 int* ptr = (int*) malloc(sizeof(int));

5 *ptr = my_value;

6 free(ptr);

7 // Undefined behaviour: dereferencing a freed pointer!

8 return *ptr;

9 }

Figure 2.6: Code which triggers UB due to use-after-free

no error is produced by either clang or gcc (version 10.3.0, with flags -Wall, -Wpedantic),

even with the high warning settings described below. Similarly, in Figure 2.7, clang does not

warn about 2 of the 3 instances of undefined behaviour (though it does warn about unused

variables)! Clearly, therefore, the programmer cannot rely on compiler warnings to avoid UB.
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1 void array_out_of_bounds () {

2 int my_array [3] = {1, 4, 5};

3 // Undefined behaviour: array index out of bounds!

4 my_array [3] = 7;

5 }

6

7 void pointer_out_of_bounds () {

8 int my_array [3] = {1, 4, 4};

9 // Implicit cast from int[] to *int; pointer is to beginning of

array

10 int *my_ptr = my_array;

11 // All good: in-bounds pointer arithmetic is defined

12 int *in_bounds = my_ptr + 2;

13 *in_bounds = 5; // my_array is now {1, 4, 5}

14 // All good: creating a pointer one -past -the -end of an array is

defined

15 int *one_past_the_end = my_ptr + 3;

16 // Undefined behaviour: constructing a pointer outside an allocation

!

17 // Yes , really ... C11 standard , 6.5.6p8

18 int *outside_alloc = one_past_the_end + 1;

19 // Undefined behaviour: accessing a pointer which does not point to

valid memory!

20 *one_past_the_end = 7;

21 }

index-out-of-bounds.c:4:3: warning: array index 3 is past the end of the array

(which contains 3 elements) [-Warray-bounds]

my_array [3] = 7;

^ ~

index-out-of-bounds.c:2:3: note: array ’my_array ’ declared here

int my_array [3] = {1, 4, 5};

^

index-out-of-bounds.c:18:8: warning: unused variable ’outside alloc’

[-Wunused-variable]

int *outside_alloc = one_past_the_end + 1;

^

2 warnings generated.

Figure 2.7: Code demonstrating undefined behaviour caused by dereferencing out-of-bounds
pointers, as well as creating out-of-bounds pointers via pointer arithmetic, which, surprisingly,
is UB even if those pointers are never subsequently accessed (see 6.5.6p8 in [7]). The warning
displayed is produced by clang version 11.0.0-2 with flags -Wall, -Wpedantic.
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2.5 Rust and Ownership Types

In this section, we give a basic overview of the Rust programming language, which we compare

and constrast to C. In particular, in Section 2.5.1, we give a brief description of the Rust

languages. Then, in Section 2.5.2, we give some examples of Rust programs, and an overview

of how Rust’s system of ownership types allows statically eliminating the kinds of error we

discussed in Section 2.4.3.

2.5.1 Rust 101

Rust is a systems programming language designed to take full advantage of modern hard-

ware while automatically verifying the “safety,” i.e. freedom from undefined behaviour, of a

large set of programs assuming only the correctness of a (hopefully) small, trusted base of

“unsafe” code [13]. This is done by restricting C-like manipulation of pointers in “safe” (i.e.,

not unsafe) code to use references, which are statically verified to uphold invariance such

as liveness and uniqueness by the borrow checker [13]. This approach is unique in that it

theoretically imposes no no runtime overhead (and, potentially, due to the additional infor-

mation available to the compiler, there may even be a boost in runtime performance), instead

statically verifying manual memory management [13]. This is achieved in a way which is

mostly transparent to the user by automatically inserting calls to destructors via the resource

acquisition is initialization (RAII) pattern, which eliminates the majority of memory leaks

(but see Figure 2.9). To make this possible (and, unlike in C++, avoid unexpected calls to a

clone method!), Rust uses a system of affine types; the combination of affine types extended

with borrowing is called ownership typing.

Rust is an imperative language, but has a distinct “functional flavor,” being in a sense a

54



1 fn main() {

2 println!("hello , world")

3 }

Figure 2.8: A “hello, world” program in Rust

member of the ML family of languages; for example, there is full support for algebraic data

types (via Rust’s enums) and pattern matching (via the match statement). This expressivity

can often make Rust programming feel like programming in a higher-level language which

just happens to support ownership types, and can allow programmers to encode interesting

abstractions and invariants (such as, e.g., that a reference to a variable read from inside

a mutex cannot outlive the mutex guard) naturally in the type system, where they can be

automatically verified. Unfortunately, Rust does not yet have a complete formal specification,

though recent work, such as the RustBelt [9] and Stacked Borrows [10] projects, have focused

on giving proper definitions for the behaviour of unsafe code and Rust’s memory model

respectively.

In particular, we introduce

• structs, which are analogues to C’s structs except that they have undefined represen-

tation (unless one explicitly annotates them with #repr(C))

• unions, which are analogues to C’s unions

• Arrays [T;n], which again are analogous to C’s arrays T[n]

• enums, which implement algebraic data types by acting as tagged unions: a union stored

along with a tag indicating which variant is currently being stored. This allows us to

safely pattern match on Rust enums.

Unlike C, however, Rust types are by default affine: they can be used at most once. Rust
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types must explicitly be marked Copy to be allowed unrestricted nonlinear use. In addition,

Rust types may be marked Drop, in which case, via the RAII pattern, they will automatically

be passed to a user-defined destructor on going out of scope unless explicitly leaked with

std::mem::forget or leaked accidentally in certain rare situations such as a cycle of references

(see Figure 2.9). This lets one implement “nearly linear” types, though Rust explicitly does

not guarantee that safe code always calls destructors.

In Rust, the main way of accessing memory is via reference types &’a T parametrized by

lifetimes ’a (often omitted as Rust can usually infer it), representing a pointer to T which is

guaranteed to be valid for the “lifetime” ’a. We can hence freely dereference such a pointer

without risking UB. What’s interesting is that, for some term t of affine type T, we can take

a reference r = &t to t without consuming t; the type of this reference is automatically

taken to be &’a T, where ’a is the lifetime for which t is live, i.e., the range of time until

t is consumed. Since lifetimes are inferred, and coercion between lifetimes is almost always

handled automatically, when the lifetime system is combined with well-designed abstractions,

Rust can statically verify a huge class of programs. This combination of affine typing and

borrowing is called ownership typing.

Risky pointer arithmetic operations, such as array indexing, are generally performed “un-

der the hood” by safe operations provided by the Rust libraries, which make use of the

guarantees upheld by the strong type system Rust provides. For example, given a reference

a: &[T] to a slice, which “under the hood” is simply a size len(a) and a pointer first(a)

to T guaranteed to point to the beginning of a valid array of len(a) values of type T (with

no guarantees if len(a) = 0, the array indexing

1 let x = a[i] + 5;
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desugars to the C code

1 int x;

2 if i < len(a) {

3 x = *(a + 5)

4 } else {

5 panic("error message")

6 }

where panic crashes the program. While such “safe” desugarings introduce minor overhead,

the optimizer can usually remove the majority of it [13]. Rust makes the promise that, if all

the unsafe code in a program is sound, i.e. contains no UB, then the program itself is sound,

regardless of what the safe code does [9]. Hence, a program which relies only on a small core

of trusted unsafe code, such as the standard library, can be considered extremely safe.

2.5.2 Borrowing

Rust’s programming model allows us to replace C’s unreliable warnings with guaranteed

errors, so long as we restrict ourselves to safe code. For example, translating the code in

Figure 2.5 to Rust gives the code in 2.10,
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1 /// This function allocates and then explicitly frees memory

2 fn explicit_drop () {

3 let memory: Vec <u8 > = Vec:: with_capacity (8192);

4 println!("{:?}", memory);

5 std::mem::drop(memory);

6 }

7

8 /// This function does *not* leak memory , even though memory

9 /// is not explicitly freed , due to RAII

10 fn no_leak () {

11 let memory: Vec <u8 > = Vec:: with_capacity (8192);

12 println!("{:?}", memory);

13 // An implicit call to ‘std::mem::drop(memory)‘ is inserted here ,

14 // since _memory is never destroyed in the function body , even

15 // though it is used.

16 }

17

18 /// This function intentionally leaks memory in safe Rust

19 fn intentional_leak () {

20 let memory: Vec <u8 > = Vec:: with_capacity (8192);

21 println!("{:?}", memory);

22 // The destructor of ‘memory ‘ is never called ,

23 // since it is consumed by ‘forget ‘

24 std::mem:: forget(memory);

25 }

Figure 2.9: Memory leaks in safe Rust
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1 fn dangling_return(x: char) -> &char {

2 &x

3 }

4

5 fn deref_dangling(x: char) -> char {

6 *dangling_return(x)

7 }

Figure 2.10: The code in Figure 2.5 translated into Rust, along with the error message
produced

which fails to compile, yielding the error message

error[E0106]: missing lifetime specifier

--> dangling -return.rs :1:32

|

1 | fn dangling_return(x: char) -> &char {

| ^ expected named lifetime parameter

|

= help: this function ’s return type contains a borrowed value with

an elided lifetime , but the lifetime cannot be derived from the

arguments

help: consider using the ‘’static ‘ lifetime

|

1 | fn dangling_return(x: char) -> &’static char {

| ^^^^^^^^

This tells us, in essence, that the lifetime of the value being returned cannot be inferred by
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Rust. Rust only ever infers lifetimes using function signatures (i.e., it ignores function bodies

when doing lifetime inference), so this makes sense. It furthermore suggests that we use the

’static lifetime, i.e., the lifetime encompassing the entire runtime of the program. However,

if we attempt this, giving the program in Figure 2.11

1 fn dangling_return_try_fix(x: char) -> &’static char {

2 &x

3 }

Figure 2.11: The code in Figure 2.5 translated into Rust with full lifetime annotations

we get error message

error[E0515]: cannot return reference to function parameter ‘x‘

--> dangling -return -try -fix.rs:2:5

|

2 | &x

| ^^ returns a reference to data owned by the current function

mirroring the warning clang gives us for 2.5. So far so good.

Translating the use-after-free bug in Figure 2.6 to use Rust’s Box, which is a zero-cost ab-

straction representing a single, owned (and therefore affine) allocation, we obtain the program

in Figure 2.12
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1 fn use_after_free(my_value: i32) -> i32 {

2 let ptr = Box::new(my_value);

3 std::mem::drop(ptr);

4 *ptr

5 }

Figure 2.12: The code in Figure 2.6 translated into Rust

which, when compiled, yields error message

error[E0382]: use of moved value: ‘ptr‘

--> use -after -free.rs:4:5

|

2 | let ptr = Box::new(my_value);

| --- move occurs because ‘ptr‘ has type ‘Box<i32>‘, which does not

implement the ‘Copy‘ trait

3 | std::mem::drop(ptr);

| --- value moved here

4 | *ptr

| ^^^^ value used here after move

As we can see, Rust realizes that, since ptr is of an affine type, passing it to drop destroys

it, and hence, it cannot be used after that point. Note that clang did not even give us a

warning here, as it cannot really track ownership implementation.

Now, consider the program in Figure 2.13. This program consumes a vector, and returns

a hash of some slice of that vector and the vector back, doubled. Consider the reordering of

this program in Figure 2.14. This fails to compile since, now, it requires that the variable s
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is used after the creation of u, which consumes u. This is an error, since s borrows from v,

and hence cannot be used once v is destroyed. As we can see in Figure 2.14, Rust not only

catches this mistake but provides an informative error message. On the other hand, in Figure

2.15, we translate both programs into C: they are both accepted without warning by clang.

As we can see, ownership typing provides a powerful mechanism to automatically verify a

large class of programs. However, under the hood, safe abstractions like Box and Vec must be

built from unsafe pieces. Furthermore, while ownership typing allows us to verify that (safe)

code is sound, it does not let us actually verify any properties of the code (e.g., that it always

returns even numbers on odd inputs, or even that it always terminates), unlike in dependent

type theory. By integrating ownership types with dependent types, it should theoretically

be possible to verify unsafe code within the language itself, i.e., without the use of external

tools, while at the same time potentially verifying specifications about safe code, all without

requiring the full burden of dependent verification for, e.g., every single pointer access (since

most can simply be verified by checking lifetimes automatically). We’re quite far from that

now, but by exploring the design space for integrating ownership and dependent types, we

hope that isotope can help work towards this goal.
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1 /// This function doubles the value of it ’s argument

2 fn double_vec(v: Vec <u8 >) -> Vec <u8 >;

3

4 /// This function returns some slice of the underlying vector

5 fn slice_vec(v: &Vec <u8 >) -> &[u8];

6

7 /// This function takes the sum of it ’s argument

8 fn hash(s: &[u8]) -> u64;

9

10 fn double_sum(v: Vec <u8 >) -> (Vec <u8 >, u64) {

11 let s: &[u8] = slice_vec (&v);

12 let h: u64 = sum(s);

13 let u = double_vec(v);

14 (u, h)

15 }

Figure 2.13: A simple Rust program which consumes a vector, and returns a hash of some
slice of that vector and the vector back, doubled.

10 fn double_sum_bad(v: Vec <u8 >) -> (Vec <u8 >, u64) {

11 let s: &[u8] = slice_vec (&v);

12 let u = double_vec(v);

13 let h: u64 = sum(s);

14 (u, h)

15 }

error[E0505]: cannot move out of ‘v‘ because it is borrowed

--> src/lib.rs :12:24

|

11 | let s: &[u8] = slice_vec (&v);

| -- borrow of ‘v‘ occurs here

12 | let u = double_vec(v);

| ^ move out of ‘v‘ occurs here

13 | let h: u64 = sum(s);

| - borrow later used here

Figure 2.14: The program in Figure 2.13 with statements re-ordered so it fails to compile,
along with the error message produced.
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10 #include <stddef.h>

11 #include <stdint.h>

12

13 struct VecU8 {

14 size_t capacity;

15 size_t len;

16 uint8_t* data;

17 };

18

19 struct SliceU8 {

20 size_t len;

21 const uint8_t* data;

22 };

23

24 struct VecU8_and_U64 {

25 struct VecU8 u;

26 uint64_t h;

27 };

28

29 struct VecU8 double_vec(struct VecU8 v);

30

31 struct SliceU8 slice_vec(const struct VecU8* v);

32

33 uint64_t sum(struct SliceU8 s);

34

35 struct VecU8_and_U64 double_sum(struct VecU8 v) {

36 struct SliceU8 s = slice_vec (&v);

37 uint64_t h = sum(s);

38 struct VecU8 u = double_vec(v);

39 struct VecU8_and_U64 r = { .u = u, .h = h };

40 return r;

41 }

42

43 struct VecU8_and_U64 double_sum_bad(struct VecU8 v) {

44 struct SliceU8 s = slice_vec (&v);

45 struct VecU8 u = double_vec(v);

46 uint64_t h = sum(s);

47 struct VecU8_and_U64 r = { .u = u, .h = h };

48 return r;

49 }

Figure 2.15: The program in Figure 2.13, along with it’s invalid re-ordering in Fig-
ure 2.14, translated into C. Both functions compile without any warnings or errors, but
double sum bad exhibits unspecified behaviour: the sum h may be doubled (if double vec

overwrites the vector in-place) or even trigger undefined behaviour (if, e.g., double vec re-
allocates v).
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Chapter 3

Language

In this chapter, we describe the isotope language and give a semi-formal definition of it’s typ-

ing rules and an internal denotational semantics for the language, in the form of a denotation

operator which takes language terms to a small, CoIC-like intuitionistic fragment of isotope

meant to represent their “mathematical value.” In Section 3.1, we motivate the isotope lan-

guage and give a high-level overview of it’s core innovations; namely, the concepts of instants

and constraint sets, and how they can be used to both typecheck and compile isotope terms.

Then, in Section 3.2, we give an account of the basic typing judgements of the isotope lan-

guage. In Section 3.4, we give typing rules for instants, and introduce the borrow checking

algorithm, one of the main contributions of this thesis, in full detail. Then, in Section 3.5, we

give an account of how the concepts in the previous section, Section 3.4, can allow us to give

rules for machine function types and fixpoints. Finally, in Section 3.6, we give an account

of isotope’s data structures; namely, inductive data declarations, primitive types such as

integers, and type formers such as arrays.
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3.1 Introduction

Say we wanted to convert the code in Figure 2.13 into a purely functional language. Inventing

a Rust-like syntax, we would write something like

double sum ≡ fn(v : Vec u8) 7→ let s = slice vec cv &v in

let h = sum cv s in

let d = double vec v in (d, h)

: Fn(Vec u8)→ (Vec u8, u8) (3.1)

This program has the data dependence graph in Figure 3.1

v u (u, h)
λ

&v s h

&*

Figure 3.1: The data dependency graph of the program in Equation 3.1

Now, say we wanted to lower this program to a C-like language; naively, we could try traversing

the data dependence graph and, at each node, adding a local variable set to the value of that

node. The issue is that there are multiple possible such traversals of the graph; in particular,

we could compile u

• After h; this is equivalent to the code in Figure 2.13

• Between s and h; this is equivalent to the code in Figure 2.14, which, as we discussed,

gives an error in Rust and undefined behaviour in C.

• Between &v and s, which is another wrong re-ordering.
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and be in compliance with the graph. What we need to do is recognize that the graph really

looks like Figure 3.2

v u (u, h)
λ

&v s h

&*

Figure 3.2: The data dependency graph of the program in Equation 3.1, annotated with
borrowing dependencies (gray dotted lines).

Here, we insert gray dotted lines between &v and u, since the former borrows resources (v) used

by the latter, s and u, for the same reason, and h and u, since constructing h uses resources

which borrow from resources (v) which are destroyed by u, and hence all of &v, s, and h

must be scheduled before u, even though there is no data dependency between them. Rust,

in essence, generates graphs like that in Figure 3.2 and then checks that they are consistent

with the program’s execution order; if we’re working in a functional language like the one

used in Equation 3.1, we only need to check that an order exists (i.e., that the extended data

dependence graph is acyclic); we may then use this order to compile our program (we go into

more detail in Chapter 4).

Unfortunately, it’s quite difficult to generate such graphs in a principled way, as we need

to analyze

• Which variables borrow from other variables

• Which variables destroy other variables

• Which variables use other variables

and not necessarily only locally: here, for example, h does not borrow from v, but since it

uses s which does, it must go before u, requiring at least some nonlocal analysis, which is
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complicated. Rust does so by introducing a system of logical constraints on the lifetimes of

variables; the approach we will choose is similar, but instead based off graph theory.

In particular, rather than consider a data dependence graph directly, we consider a graph

of instants in time. In particular, for each resource in the graph, we single out 3 important

instants:

• The beginning of a resource, which is the first possible time it can be used.

• The end of the resource, which is the last possible time it can be used.

• The consumption of a resource, which is when it is used. Naturally, this is after the

beginning, and before the end (and, therefore, the beginning is also before the end, by

transitivity).

We then get the following graph

v

u (u, h)
λ

&v s h

Figure 3.3: The TDG of the program in Figure 2.13. We represent the beginning of a resource
with a black node, the end of a resource with a crossed-out node, and the consumption of
a resource, if different from the end, as a white node. We represent virtual dependencies
induced by borrowing as gray, dotted lines, and edges between the beginning, consumption,
and end of a given node as thick lines.

While this graph looks quite complicated, it’s actually very easy to derive using only local

information. In particular:

• If x depends on y but does not consume it, then x must be compiled after y but before

y is destroyed and hence no longer available. So the beginning of x is between the

beginning of y and the consumption of y (see Figure 3.5b).
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• If x uses up y, then x must be (fully) compiled after y is destroyed, and yet this point

must not be such that y would be impossible to use (because, e.g., it depended on some

underlying resource which was destroyed). So therefore, the beginning of x is between

the consumption of y and the end of y (see Figure 3.5a).

• If x borrows from y, then it’s impossible to use x in any way after y has been destroyed;

in other words, the end of x is before the consumption of y. In the case of a direct

borrow of x, e.g., the expression &x, we get Figure 3.5c.

In other words, we need to walk the graph of the program, and build up constraints between

the instants within the program. These constraints are intimately tied to where, and whether,

variables are used; hence, instead of the usual strategy for implementing sub-structural types

(which are necessary for ownership typing) by removing rules for manipulating typing contexts

(as in Section 2.2), it makes sense to handle sub-structurality as an additional restriction along

with, and directly determining, the set of constraints between instants.

This leads us to directly the core idea behind isotope: to define a type theory which,

separate from the typing context, builds up a set of constraints which, by handling both

sub-structurality and the ordering and creation of instants, implements a system of Rust-like

ownership types. Once our constraint set is built up, we may then check it for consistency to

make sure our program can compile down to a valid low-level, C-like program; the constraint

set we have built up can then be directly used to build this program by, in essence, simply

traversing it as a graph and, every time we come across the beginning of a resource, compiling

it. Once we have gotten to this point, there’s very little stopping us from introducing type

dependency, and hence, being left with a system of integrated dependent and ownership types,

i.e., the goal of the thesis: dependent types with borrowing.
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This chapter, then, deals with the main contribution of this thesis: an experimental

attempt at defining a set of typing rules for dependent, constraint-based ownership typing.

The main aim of defining these rules is to explore the design space for possible type theories

of this form: the rules themselves are not final, and can probably be significantly simplified.

However, we have tried to be relatively formal, so as to lay the foundation for a type theory

which could eventually be proved fully consistent. For this reason, we have attempted to define

isotope’s type theory as an extension of the CoIC, and introduced internal denotations for all

terms in isotope’s CoIC-like fragment; a proof of consistency might look something like “the

CoIC-like fragment of isotope is equiconsistent with the CoIC, and isotope is equiconsistent

with it’s CoIC-like fragment; therefore, isotope is consistent.”

3.2 Typing Judgements and Constraints

We now begin defining the core isotope language. The full grammar is deferred to Figure

3.4, but we first present the calculus rule by rule.

3.2.1 Typing Contexts

We begin by defining isotope typing contexts as follows:

Definition 11 (Typing Context). A typing context Γ is a set of judgements of the form

• x : A where x is a variable and A is a term, meaning “the variable x is of type A”

• x←: A where x is a variable and A is a term, meaning “the variable x is a named term

of type A”
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〈expr〉 ::= x | 〈expr〉 〈expr〉 | λx. 〈expr〉 | Πx :〈expr〉.〈expr〉 | 〈expr〉⊥ | Ui
| 〈indef 〉::n | 〈indef 〉::casen 〈expr〉 {〈case〉, ..., 〈case〉} | 〈fixdef 〉::f
| Mi 〈instant〉 | Fnc 〈blargs〉 → 〈expr〉 | Closure (〈block〉,...,〈block〉)
| ∀ 〈ivar〉 〈expr〉 | λ̂ 〈ivar〉 〈expr〉 | 〈expr〉 〈instant〉 | Ref 〈expr〉 〈instant〉
| [〈expr〉; 〈expr〉]
| 〈expr〉 in 〈expr〉 since | 〈expr〉 as 〈expr〉
| & 〈expr〉 | &move 〈expr〉
| let x = 〈expr〉 in 〈expr〉 | const x = 〈expr〉 in 〈expr〉
| 〈indef 〉::matchn 〈expr〉 { 〈block〉, ..., 〈block〉 }
| fnc 〈block〉 | close 〈block〉
| δ 〈expr〉 | D 〈expr〉 | d 〈expr〉 | T 〈expr〉 | t 〈expr〉 | sizeof 〈expr〉 | alignof 〈expr〉
| 〈primitive〉

〈case〉 ::= c p1, ..., pn 7→

〈indef 〉 ::= Ind(〈sigs〉 := 〈sigs〉) | Data(〈sigs〉 := 〈sigs〉)

〈sigs〉 ::= [p1 : 〈expr〉, ..., pn : 〈expr〉]

〈fixdef 〉 ::= Fix([f1 = F1, ..., fn = Fn]) | Phi([f1 = F1, ..., fn = Fn])

〈block〉 ::= 〈blargs〉 7→ 〈expr〉

〈blargs〉 ::= p1: 〈expr〉, ..., pn: 〈expr〉

〈ivar〉 ::= ‘a ∈ [ 〈instant〉, 〈instant〉 ] | ‘a � 〈instant〉 | ‘a � 〈instant〉

〈instant〉 ::= ‘a | ∞ | 〈instant〉 ∧ 〈instant〉 | 〈instant〉 ∨ 〈instant〉 | is 〈instant〉 | ip 〈instant〉

Figure 3.4: A simple AST grammar for the isotope language
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• x← a : A where x is a variable and a,A are terms, meaning “the variable x is a named

term of type A defined to be a”

• ‘αRR means “the variable ‘α is an instant satisfying constraint RR”, where R ∈ {“ �

”, “ � ”} and R is an instant or R = “ ∈ ” and R = [‘a, ‘b] where a, b are instants.

For contexts Γ,∆, we will take Γ,∆ to mean the union of the contexts as sets. If Γ is a context

and J is a judgement, we will define Γ, J = Γ, {J}.

Given a variable x, we will write x ∈ Γ to mean “there exists a judgement x : A, x←: A,

or x ← a : A in Γ.” Similarly, given an instant variable ‘α, we will write ‘α ∈ Γ to mean

“there exists a judgement ‘αRR in Γ.”

Unlike in Chapter 2, we introduce three new kinds of judgement: x←: A, x← a : A, and

‘αRR. x←: A is really a bit of a hack; it’s simply there to ensure that terms which appear in

instants are each given a unique identifier (their variable name x). x ← a : A is similar, but

also simplifies our treatment of let-statements in an ownership typed setting. ‘αRR is simply

the judgement to introduce a new lifetime variable ‘α assumed to satisfy a given constraint.

Given a typing context Γ, we define the symmetric form of Γ, sym(Γ), as follows:

sym(A,B) = sym(A), sym(B) (3.2)

sym(x : A) = x : A, sym(x←: A) = x←: A, sym(x← a : A) = x← a : A (3.3)

sym(‘α ∈ [‘a, ‘b]) = ‘α ∈ [‘a, ‘b] (3.4)

sym(‘α � ‘a) = sym(‘α � ‘a) = ∅ (3.5)
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3.2.2 Constraints

The key innovation of the isotope language is the introduction of constraints, which are

used to model Rust-like ownership types. When typing machine terms, we will build up sets

of constraints, which are then checked at function definition boundaries (this is the borrow

check) to enforce that ownership rules are not violated. Intuitionistic values and type formers

are, for the most part, transparent to this process. Later, in Chapter 4, we will show how the

data structures built up during this phase can be used to compile isotope into a low level

language (we will use C as an example, but the real implementation uses LLVM).

We begin by defining an instant constraint set, which, in essence, is a set of ordering

relations which can be imposed on the instants in a term

Definition 12 (Instant Constraint Set). An instant constraint set I is a relation from the

set of instants to itself which is either finite (represented as a finite set of judgements of the

form ‘a � ‘b) or discrete (i.e., ∀‘a, ‘b, ‘aI‘b, represented by the symbol !). We define a partial

order on instant constraint sets as follows

I � I ′ ⇐⇒ I ⊆ I ′ (3.6)

Given an individual instant ‘a, we write ‘a ∈ I to mean ∃‘b, (‘a, ‘b) ∈ I ∨ (‘b, ‘a) ∈ I.

Given an instant constraint set I, we define it’s constrained variable set to be given by

rv(C) =
⋃

(‘a,‘b)∈I

fv(‘a) ∪ fv(‘b) (3.7)

We define it’s free variable set fv(I) to be given by ∅ if I =!, and rv(I) otherwise.
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Given an instant constraint set I, we denote it’s transitive closure (not reflexive) as I+,

which we also take to be a constraint set. 1 We define an instant constraint set’s underlying

equivalence constraint I= to be given by

I= = {(‘a, ‘b) : (‘a, ‘b) ∈ I+ ∧ (‘b, ‘a) ∈ I+} (3.8)

This is again an instant constraint set (and not reflexive).

We write the union of instant constraint sets as either I, I ′ or I ∪ I ′.

We couple this with usage constraints, which consist of consumptions (usages) and simple

dependencies (reads), via the following definitions:

Definition 13 (Usage Bag). A usage bag U is a finite multiset of uses u(r) and partial

uses p(r) of resources r, written u(r1), ..., u(rn), p(r′1), ..., p(r′n), or the expression !, which

is assumed to contain an infinite number of copies of every resource. The catenation (i.e.,

multiset sum) of usage bags is written U,U ′. For general values s, we define u(s) = {u(v) :

v ∈ fv(s)}, and likewise for p(s). We define the union of usage bags U ∪U ′ to be given by the

smallest such bag containing both U and U ′ (i.e., the count of any element is the maximum

of the counts in U and U ′, rather than the sum).

Definition 14 (Read Set). A read set R is a finite set of resources r, written r(r1), ..., r(rn),

or the expression !, which is assumed to contain every resource. The union of resource sets is

written either R,R′ or R ∪R′. For general values s, we define r(s) = {r(v) : v ∈ fv(s)}.

We may now define a constraint set as a combination of an instant constraint set and a

set of usage constraints (i.e., a usage bag and a read set), as follows:

1If the closure was reflexive, I+ would be always be infinite and yet may not be equal to !, so I+ would not
be a valid instant constraint set
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Definition 15 (Constraint Set). A constraint set is a tuple C = (I, U,R), where I is an

instant constraint set, U is a usage bag, and R is a read set. We define a partial order on

constraint sets given by the lattice order, i.e.,

C = (I, U,R) ⊆ C ′ = (I ′, U ′, R′) ⇐⇒ I ⊆ I ′ ∧ U ⊆ U ′ ∧R ⊆ R′ (3.9)

and define the maximal constraint set ! to be given by (!,∅, !, !), and the empty constraint set

∅ to be given by (∅,∅,∅,∅). The catenation of constraint sets is written C,C ′, and defined

as

(I, U,R), (I ′, U ′, R′) = ((I, I ′), (U,U ′), (R,R′)) = ((I ∪ I ′), (U,U ′), (R ∪R′)) (3.10)

while the union of constraint sets is written C,C ′ and defined as

(I, U,R) ∪ (I ′, U ′, R′) = ((I ∪ I ′), (U ∪ U ′), (R ∪R′)) = ((I, I ′), (U ∪ U ′), (R,R′)) (3.11)

As syntax sugar, we will treat instant constraint sets I as constraint sets (I,∅,∅,∅), us-

age bags U as constraint sets (∅,∅, U,∅), and read sets as constraint sets (∅,∅,∅, R); in

particular, we will allow writing constraint sets in the format

u(r2), r(r3), p(r9), ‘α � ‘β, u(r4) (3.12)

and so on. We define

insts((I, U,R)) = I, usage((I, U,R)) = U, read((I, U,R)) = R (3.13)
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In general, we will annotate our typing contexts with a constraint set as follows:

Definition 16 (Constrained Context). A constrained context is a typing context Γ together

with a constraint set C, written Γ;C.

As in Section 2.2, we have a weakening rule

Γ;C ` P Γ ⊆ Γ′ C � C ′

Γ′;C ′ ` P (3.14)

which we will often apply implicitly.

3.2.3 Equality, Annotations, and Free Variables

As in Section 2.1, direct comparison of terms is represented by ≡, with implicit quotienting

under α-conversion. Given a term or instant t, we define it’s free variable set fv(t) to be the

set of free variables the term depends on. We define substitution as usual. In particular, we

have

• For a term variable x, fv(x) = {x}, x[a/x] ≡ a, and x[a/y] ≡ x.

• For an instant variable ‘α, fv(‘α) = {‘α}, x[‘a/‘α] ≡ ‘a, and ‘α[‘a/‘β] = ‘α.

We assume the following fact:

Claim 5. If x /∈ fv(t), then t[a/x] ≡ t.

In general, we apply a vague “α-conversion convention” in which, for simplicity, we assume

that variable names never collide, silently performing α-conversion where necessary to do so.

2 We define a fully annotated term to be a term t, a term A, and a full derivation that t : A

2In the actual implementation, there are no variable names, as we use de-Bruijn indices, but for notational
convenience we use a name-based convention.
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(in particular, we may access the types assigned to subterms of t at points in the derivation,

as well as, e.g., the type of A itself). We define the constant variable set of a fully annotated

term cv(t : A), which are the variables which must be held constant for a term to be valid. In

general, cv(t : A) ⊆ fv(t) ∪ fv(A); we will often write cv(t) as shorthand for cv(t : A).

Similarly, we define a reduction relation to be a relation R from the set of terms to itself

(as well as, potentially, from the set of instants to itself), with →R being the congruence of R

with term formers (i.e., s→R s
′ =⇒ st→R s

′t, and so on). We define �R as the transitive,

reflexive closure of →R and =R as the symmetric closure of →R. Where a reduction relation

R depends on a context Γ;C such that

Γ ⊆ Γ′ ∧ C ⊆ C ′ =⇒ R(Γ;C) ⊆ R(Γ′;C ′) (3.15)

we call such a relation contextual ; in this case, we write

Γ;C ` (s, t) ∈ R ⇐⇒ (s, t) ∈ R(Γ;C), (s, t) ∈ R ⇐⇒ ` (s, t) ∈ R (3.16)

Γ;C ` s→R t ⇐⇒ s ∈ toR(Γ;C)t, s→R t ⇐⇒ ` s→R t (3.17)

and likewise for �R and =R. We define a privileged contextual reduction relation i, and in

general take (→) = (→i), (�) = (�i), and (=) = (=i); that is,

Γ;C ` a = b ⇐⇒ Γ;C ` a =i b (3.18)
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and so on. Note that if we have a reduction rule of the form

P

t→R s (3.19)

this implies a rule of the form
P

Γ;C ` t→R s (3.20)

by Equation 3.16. Given a relation R, we define it’s reduced variable set to be given by

rfvR(t) =
⋂
s�Rt

fv(s) (3.21)

As shorthand, we have rfv(t) = rfvi(∅)(t).

3.2.4 Basic Judgements

We may now introduce the basic typing judgements making up isotope’s type theory. Un-

fortunately, there are quite a few of them: simplifying isotope is a major potential area for

future work.

(a) Γ;C ok, meaning “the constrained context Γ;C is well-formed,” i.e., the definitions in Γ

can be ordered in an acyclic manner such that each is well-typed and well-defined, and

all the instants in C are defined in Γ.” This has basic axiom

∅;∅ ok (3.22)

In general, for all the following judgements, we will implicitly assume that any contexts

appearing in either the premises or conclusions must be well-formed for the judgement

78



to be valid. We define

Γ ok ⇐⇒ Γ; ! ok (3.23)

(b) Γ;C ` A type(`), meaning “A is a type with linearity ` in context Γ,” where

` ∈ Lin = {linear, affine, relevant, lifetime} (3.24)

(see Equation 3.48). We have basic axiom

Γ;C ` A type(`) ` � `′

Γ;C ` r type(`′) (3.25)

where
` ∈ Lin

` ` : Lin

Γ;C ` ` : Lin

Γ;C ` ` � linear

Γ;C ` ` : Lin

Γ;C ` scalar � ` (3.26)

If ` is not specified, i.e. we have Γ;C ` A type. we assume ` = linear. We give basic

axioms
Γ;C ` A type x /∈ Γ

Γ, x : A;C ok

Γ;C ` A type x /∈ Γ

Γ, x←: A;C ok (3.27)

(c) Γ;C ` x←: A, meaning “given constraints C, the variable x is a named term of type A

in Γ.” This judgement has basic axioms

Γ, x← a : A;C ` x←: A Γ, x←: A;C ` x←: A

Γ;C ` A type x /∈ Γ

Γ, x←: A;C ok

(3.28)

(d) Γ;C ` a : A, meaning “given constraints C, the term a is of type A in Γ.” This
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judgement has basic axioms

Γ, x : A;C ` x : A

Γ;C ` x←: A

Γ;C ` x : A

Γ;C ` a : A x /∈ Γ

Γ, x← a : A;C ok (3.29)

(e) Γ;C ` ‘a inst(v), meaning “a is an instant in Γ with variance v,” where v = {−1, 0, 1},

meaning “contravariant,” “invariant,” and “covariant” respectively. For brevity, we

write −1 as − and 1 as +. This judgement has basic axioms

Γ, ‘αRR;C ` ‘α inst(variance(R))

Γ;C ` ‘a inst(0)

Γ;C ` ‘a inst(v) (3.30)

Γ;C ` ‘a inst(+)

Γ, α � ‘a;C ok

Γ;C ` ‘a inst(−)

Γ, α � ‘a;C ok

Γ;C ` ‘a inst(0) Γ;C ` ‘b inst(0)

Γ, α ∈ [‘a, ‘b];C ok

(3.31)

where

variance(“ � ”) = −, variance(“ ∈ ”) = 0, variance(“ � ”) = + (3.32)

We define
Γ;C ` ‘a inst(v)

Γ;C ` ‘a inst (3.33)

with basic axioms
Γ;C ` ‘a inst Γ;C ` ‘b inst

Γ;C, ‘a � ‘b ok (3.34)

(f) Γ;C ` a rsrc(A, `), meaning “given constraints C, a is a resource of type A with linearity
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` in context Γ,” where ` ∈ {linear, affine, relevant, lifetime} We have basic axioms

Γ;C ` r rsrc(A, `) ` � `′

Γ;C ` r rsrc(A, `′)

Γ;C ` A type(`) Γ;C ` x←: A

Γ, C ` x rsrc(A, `) (3.35)

We define
Γ;C ` r rsrc(A, `)

Γ;C ` r rsrc (3.36)

which has basic axioms

Γ;C ` r rsrc

Γ;C, o(r) ok

Γ;C ` r rsrc

Γ;C, u(r) ok

Γ;C ` r rsrc

Γ;C, r(r) ok (3.37)

We define shorthand

Γ;C ` x rsrc(affine)

Γ;C ` x irrel

Γ;C ` x rsrc(affine)

Γ;C ` x copy (3.38)

(g) Γ;C ` a obsv(x), meaning “given constraints C, a is a term which observes x in Γ,”

where x is a variable. This has basic axioms

Γ; ! ` x irrel

Γ;C ` a obsv(x) , Γ;C ` x obsv(x) (3.39)

(h) Γ;C ` A/B means “given constraints C, A is a substitute for B in Γ.” When there are
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no constraints, we may simply write Γ ` A/B. This judgement has basic axioms

Γ;C ` A = B

Γ;C ` A/B
Γ;C ` A/B Γ;C ` B/C

Γ;C ` A/C
Γ;C ` A/B Γ;C ` A : C

Γ;C ` B : C (3.40)

Γ;C ` A/B Γ;C ` C : D Γ;C ` AC : E

Γ;C ` AC/BC (3.41)

Γ;C ` A/B Γ;C ` ‘a inst Γ;C ` A‘a : D

Γ;C ` A‘a/B‘a (3.42)

(i) Γ;C ` A <: B means “given constraints C, A is a subtype of B in Γ.” When there are

no constraints, we may simply write Γ ` A <: B. This judgement has basic axioms

Γ;C ` A type Γ;C ` B type Γ;C ` A/B
Γ;C ` A <: B

Γ;C ` A <: B Γ;C ` a : A

Γ;C ` a : B (3.43)

We will often apply the rules in bullet (h) along with those in Equation 3.43 implicitly.

(j) Γ;C ` ‘a � ‘b means “given constraints C, ‘a is always before ‘b in Γ.” This judgement

has basic axioms

Γ;C ` ‘a inst

Γ;C ` ‘a � ‘a

Γ;C ` ‘a � ‘b Γ;C ` ‘b � ‘c

Γ;C ` ‘a � ‘c

Γ;C ` ‘a � ‘b Γ;C ` ‘b � ‘a

Γ;C ` ‘a = ‘b

(3.44)

Γ, ‘α � ‘a;C ` ‘α � ‘a Γ, ‘α � ‘a;C ` ‘a � ‘α (3.45)

Γ, ‘α ∈ [‘a, ‘b];C ` ‘α � ‘b Γ, ‘α ∈ [‘a, ‘b];C ` ‘a � ‘α (3.46)

We may write Γ;C ` ‘b � ‘a as Γ;C ` ‘a � ‘b. Similarly, we write Γ;C ` ‘a ∈ [‘b, ‘c] to

mean Γ;C ` ‘b � ‘a and Γ;C ` ‘a � ‘c.
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3.3 Intuitionistic Type Theory

We now define the core intuitionistic type theory underlying isotope, which is simply a

slightly modified version of the Calculus of Inductive Constructions.

3.3.1 Universes

Intuitionistic terms are equipped with a hierarchy of intuitionistic universes Ui parametrized

by linearities `, with the following typing rules 3

` Ui : Lin→ Ui+1 scalar

i ≤ j ` � `′

` Ui `/Uj `′
Γ; ! ` A : Ui `

Γ;C ` A type(`) (3.47)

where Lin is the inductive type (see Section 3.3.3) given by

Ind([Lin : U1] := [scalar : Lin, affine : Lin, relevant : Lin, linear : Lin]) (3.48)

While universes are parametrized by linearities, any term can be used nonlinearly within an

intuitionistic term, as linearity is enforced by constraint sets C and we are usually able to use

C =! in the intuitionistic setting (which disables all restrictions). In general, we write Ui as

shorthand for Ui scalar where there is no risk of confusion. A type A : Ui` for ` 6= scalar is

called a mixed type, as it may contain both intuitionistic and machine components.

3The type A→ B is defined in Section 3.3.2
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3.3.2 Dependent Function Types

As in Section 2.3.2, we introduce typing rules for dependent function types

Γ; ! ` A : Ui ` Γ, x : A; ! ` B : Ui `
Γ;C ` Πx : A.B : Ui `

Γ, x : A;C ` s : B x /∈ fv(C)

Γ;C ` λx.s : Πx : A.B (3.49)

with A→ B ≡ Π− : A.B. We introduce application of dependent functions

Γ;C ` f : Πx : A.B Γ;C ′ ` a : A

Γ;C,C ′ ` fa : B[a/x] (3.50)

which allows us to define the β-reduction relation

β = {((λx.s)t, s[t/x]) : s, t ∈ Λ, x ∈ V} (3.51)

We have that β ⊆ i, implying in particular that s →β s
′ =⇒ s → s′. These terms have

variable sets

v(Πx : A.B) = v(A) ∪ (v(B) \ {x}), v(λx.s) = v(s) \ {x}, v(st) = v(s) ∪ v(t) (3.52)

for v = fv, cv and reduction axioms

A→R A
′

Πx : A.B →R Πx : A′.B

B →R B
′

Πx : A.B →R Πx : A.B′
s→R s

′

λx.s→R λx.s
′ (3.53)

s→R s
′

st→R s
′t

t′ →R t

st→R st
′ (3.54)
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3.3.3 Inductive Types and Pattern Matching

We repeat the definition of inductive definition from Section 2.3.9

Definition 17 (Inductive Definition). An inductive definition is an expression of the form

Ind(ΓI := ΓC) (3.55)

where ΓI = [Ij : Aj ],ΓC = [cjk : Cjk] are sets of type bindings such that each Aj is an arity

(see Definition 7) and each Cjk is a type of constructor for Ij (see Definition 6) 4.

We adapt Definition 9 for a well-formed inductive definition from Section 2.3.9 to isotope’s

type theory as follows

Definition 18 (Well-formed Inductive Definition). We will say an inductive definition I ≡

Ind([Ij : Aj ] := [cjk : Cjk]) is well-formed in Γ;C if

• Each Aj is a type in Γ;C, i.e. Γ;C ` Aj type.

• Each Cjk is a type of constructor of Ij which satisfies the positivity condition (see Def-

inition 8) for all types in the definition I1, ..., IJ

• Each Aj is an arity of sort sj (see Definition 7)

• ∀j, k,Γ, I1 : A1, ..., IJ : AJ ;C ` Cjk : sj

We will write this judgement as

Γ;C ` I ok (3.56)

4Note that Definition 7 refers to universes Ui; here, as previously described, we take that to mean Ui scalar.
In particular, this disallows including mixed types in any inductive types, which, for now, is an intentional
simplification.
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We introduce typing rules

Γ;C ` I ok
IndΓ;C ` I :: Ij : Aj

Γ;C ` I ok
ConsΓ;C ` I :: cjk : Cjk[I :: I`/I`]`=1..J (3.57)

When there is no risk of confusion, we will often omit judgements of the form Γ ` I ok and

write N for I ::N .

Similarly, we adapt the definition of pattern-matching from Section 2.3.9 as follows:

Definition 19 (Pattern Matching). Given an inductive definition I = Ind([Ij : Aj ] := [cjk :

Cjk]), for each Ij, we define an case statement I :: caseIj with typing rule

Γ;C ` I ok

Γ;C ` i : I :: Ij

Γ;C ` F : I :: Ij → Ui

(Γ, (pn : Pn)n=1..Nk
;C ` rk : F (cjk p1 ... pNk

))k

caseΓ;C ` I :: caseIj i {(cjk p1 ... pNk
7→ rk)k} : F (i) (3.58)

where (see Definition 6)

Pk = paramI(Cjk), Nk = len(Pk)

To interpret pattern matching, we introduce a reduction rule ι ⊆ i, such that we have, for
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k = 1, ..., n,

(I :: caseIj (I :: cjk a1 ... aNk
) {cj1 p1 ... pN1 7→ r1, ..., cjKj p1 ... pNKj

7→ rKj},

rk[an/pn]`=1,...,Nk
) ∈ ι (3.59)

Where I is clear from context, we may omit it.

We define

v(Ind([Ij : Aj ] := [cjk : Cjk])) =

⋃
j

v(Aj) ∪
⋃
k

v(Cjk)

 \ {(Ij)j} (3.60)

for v = fv, cv, and, similarly, introduce reduction rules

i→R i
′

caseIj i {(cjk p1 ... pNk
7→ rk)k} →R caseIj i

′ {(cjk p1 ... pNk
7→ rk)k} (3.61)

Similarly, where k 6= ` =⇒ rk ≡ r′k, we have

r` →R r
′
`

caseIj i {(cjk p1 ... pNk
7→ r′k)k} →R caseIj i {(cjk p1 ... pNk

7→ r′k)k} (3.62)
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We introduce basic inductive types

Ind([0 : U1] := []) (3.63)

Ind([1 : U1] := [() : 1]) (3.64)

Ind([bool : U1] := [true : bool, false : bool]) (3.65)

Ind([N : U1] := [0 : N, s : N→ N]) (3.66)

Ind([IdA : Ui] := [reflA : Πa : A.IdA a a]) where A : Ui (3.67)

Ind([Maybe A : Ui]) := [JustA : A→ Maybe A,NothingA : Maybe A] where A : Ui (3.68)

Ind([Σa : A.B : Ui] := [(, ) : Πa : A.B → Σa : A.B]) where A,B : Ui (3.69)

We assume these are always in scope, in addition, we omit subscript A when there is no risk

of confusion (e.g., writing Id or refl instead of IdA or reflA). We assume the existence of the

following functions on inductive types, with a proper definition (and, hopefully, interpreter

optimization):

• Arithmetic on N, e.g. add, sub,mod, etc. We will often write this with operators, e.g.

+,−.

• Logic on bool (e.g. and, or)

• A predicate Le : N → N → U1, where Le n m means n ≤ m. Similar predicates Lt for

<, and so on.

• Wrapping n-bit arithmetic on Bn ≡ Σm : N.Lt m 2m, of the form addn, subn, etc, along
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with a wrapping n-bit truncation function truncn : N→ Bn such that

∀closed b ∈ Bn.truncn(π1b) = b (3.70)

and n-bit operations on Bn, e.g. andn, shrn and xorn. We will often write these with

operators, e.g. +,−,⊕.

• Defining Fn ≡ Σm : N.Lt m n (in particular, Bn = F2n), we assume the existence of

functions switchA : A→ ...→ A→ Fn → A which, given n values of type A, return the

nth.

3.3.4 Fixpoints

As in Section 2.3.8, we define a fixpoint definition as follows:

Definition 20 (Fixpoint Definition). Given symbols f1, ..., fn and terms F1, ..., Fn, we define

a fixpoint definition to be an expression of the form Fix([fj = Fj ]), which we will view as

mutually recursively defining each symbol fj in terms of the other symbols fk. For a fixpoint

definition F , we introduce terms F :: fj corresponding to each symbol fj. Where there is no

risk of confusion, we will write fj to mean F :: fj.

The typing rule is the same, namely, for F ≡ Fix([fj : Fj = Dj ])

(Γ, (fi : Fi)i; ! ` Dj : Fj)j Γ ` F terminating

Γ;C ` F :: fk : Fk (3.71)

where the termination checker used is unspecified but guaranteed to support at least primitive

recursion.
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3.4 Instants and Borrow Checking

In this section, we define instants. We then demonstrate how types and terms may be

parametrized by instants using the ∀ and λ̂ operators. Finally, we introduce machine universes

parametrized by instants and linearities.

3.4.1 Instants

The core idea of isotope is the introduction of instants, which we use as building blocks to

define a notion of a value’s lifetime. In particular, given a resource r, we introduce instants

representing the beginning br, consumption cr, and end er of the resource via the following

rules
Γ;C ` a rsrc

Γ;C ` ba inst(0)

Γ;C ` a rsrc

Γ;C ` ca inst(0)

Γ;C ` a rsrc

Γ;C ` ea inst(0) (3.72)

We introduce basic ordering rules

Γ;C ` a : A

Γ;C ` ba � ca

Γ;C ` a : A

Γ;C ` ca � ea (3.73)

We may now describe moments in time such as, e.g., “the time a is consumed” (ca) or “the

time a is fully constructed” (ba), but still cannot describe instants such as “some time after

both a and b are fully constructed, but before c is consumed.” To do so, we introduce the

meet ‘a ∧ ‘b and join ‘a ∨ ‘b of instants ‘a, ‘b, representing the latest instant before ‘a and ‘b
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and the earliest instant after ‘a and ‘b respectively. We have introduction rules 5

Γ;C ` ‘a inst(v) Γ;C ` ‘a inst(v)

Γ;C ` ‘a ∧ ‘b inst(v)

Γ;C ` ‘a inst(v) Γ;C ` ‘b inst(v)

Γ;C ` ‘a ∨ ‘b inst(v) (3.74)

with variable sets

v(‘a ∧ ‘b) = v(‘a ∨ ‘b) = v(‘a) ∪ fv(‘b) (3.75)

for v = fv, cv, and reduction rules

‘a→R ‘a′

‘a ∧ ‘b→R ‘a′ ∧ ‘b

‘b→R ‘b′

‘a ∧ ‘b→R ‘a ∧ ‘b′
‘a→R ‘a′

‘a ∧ ‘b→R ‘a′ ∨ ‘b

‘b→R ‘b′

‘a ∧ ‘b→R ‘a ∨ ‘b′

(3.76)

We introduce ordering rules

Γ;C ` ‘a1 inst(v) Γ;C ` ‘a2 inst(v)

Γ;C ` ‘a1 ∧ ‘a2 � ‘ai

Γ;C ` ‘b � ‘a1 Γ;C ` ‘b � ‘a2

Γ;C ` ‘b � ‘a1 ∧ ‘a2 (3.77)

Γ;C ` ‘a1 inst(v) Γ;C ` ‘a2 inst(v)

Γ;C ` ‘ai � ‘a1 ∨ ‘a2

Γ;C ` ‘a1 � ‘b Γ;C ` ‘a2 � ‘b

Γ;C ` ‘a1 ∨ ‘a2 � ‘b (3.78)

In particular, these imply that ∧ and ∨ are commutative, as

Γ;C ` ‘a ∧ ‘b � ‘b Γ;C ` ‘a ∧ ‘b � ‘a

Γ;C ` ‘a ∧ ‘b � ‘b ∧ ‘a

Γ;C ` ‘b ∧ ‘a � ‘a Γ;C ` ‘b ∧ ‘a � ‘b

Γ;C ` ‘b ∧ ‘a � ‘a ∧ ‘b

Γ;C ` ‘a ∧ ‘b = ‘b ∧ ‘a (3.79)

5Note in particular that we do not allow taking the meet (∧) or join (∨) of instants with mixed variances;
e.g., if ‘a inst(+) and ‘b inst(−), then ‘a ∧ ‘b is invalid. On the other hand, as invariant instants ‘a inst(0) can
be coerced to either covariant or contravariant instants, we may freely take their meet and join with either.
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and likewise for ∨. We also introduce units for the ∧ and ∨ via the following rules

` ∞ inst(0) ` −∞ inst(0) (3.80)

with empty free variable sets and ordering rules

Γ;C ` ‘a inst

Γ;C ` ‘a � ∞
Γ;C ` ‘a inst

Γ;C ` −∞ �′ a (3.81)

giving ‘a ∧∞ = ∞∧ ‘a = ‘a ∨ −∞ = −∞ ∨ ‘a = ‘a. As we wish to be able to express strict

constraints ‘a ≺ ‘b, we introduce successor and predecessor instants

Γ;C ` ‘a inst(v)

Γ;C ` is‘a inst(v)

Γ;C ` ‘a inst(v)

Γ;C ` ip‘a inst(v) (3.82)

with variable sets

v(is‘a) = v(ip‘a) = v(‘a) (3.83)

for v = fv, cv, and reduction rules

‘a→R ‘a′

is‘a→R is‘a′
‘a→R ‘a′

is‘a→R ip‘a′ (3.84)

and ordering rules

Γ;C ` ‘a inst

Γ;C ` ‘a � is‘a

Γ;C ` is‘a � ‘a

Γ;C ` ‘a =∞
Γ;C ` ‘a inst

Γ;C ` ip‘a � ‘a

Γ;C ` ‘a � ip‘a

Γ;C ` ‘a = −∞ (3.85)
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We also introduce the ability to create new, opaque instants ‘x(u) from an infinite set of

names (we assume each name is unique, assigning human-readable names as a convenience),

` ‘x(u) inst(0) (3.86)

where u ∈ {0, 1} denotes whether this instant is separated. If a constraint set equates two

separated instants, we will consider it to be inconsistent.

We distinguish opaque instants from instant variables such as ‘α by, conventionally, using

Latin letters rather than Greek letters. Opaque instants do not show up in the free variable

set of an instant.

3.4.2 Instant Parameters

Now that we have introduced a basic calculus of instants, we can define the type former ∀ to

allow universal quantification over instants to have the following introduction rules

Γ, ‘αRR;C ` T : Ui ‘α /∈ sfv(C)

Γ;C ` ∀‘αRR.T : Ui

Γ, ‘αRR;C ` t : T ‘α /∈ sfv(C)

Γ;C ` λ̂‘αRR.t : ∀‘aRR.T (3.87)

Universally quantified terms have variable sets

v(∀‘αRR.T ) = v(R) ∪ (v(T ) \ {‘α}) (3.88)

for v = cv, fv and reduction rules

T →R T
′

∀‘αRR.T →R ∀‘αRR.T ′
R→R R

′

∀‘αRR.T →R ∀‘αRR′.T (3.89)
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where
‘a→R ‘a′

[‘a, ‘b]→R [‘a′, ‘b]

‘b→R ‘b′

[‘a, ‘b]→R [‘a, ‘b′] (3.90)

To allow specializing terms quantified by instants, we provide rules for instant application

Γ;C ` ‘a inst(−) Γ;C ` x : ∀‘α � ‘b.T Γ;C ` ‘a � ‘b

Γ;C ` x‘a : T (3.91)

Γ;C ` ‘a inst(+) Γ;C ` x : ∀‘α � ‘b.T Γ;C ` ‘b � ‘a

Γ;C ` x‘a : T (3.92)

Γ;C ` ‘a inst(0) Γ;C ` x : ∀‘α ∈ [‘b, ‘c].T Γ;C ` ‘a ∈ [‘b, ‘c]

Γ;C ` x‘a : T (3.93)

As for term application, instant application has variable sets

v(x‘a) = v(x) ∪ v(‘a) (3.94)

for v = fv, cv, and reduction rules

x→R x
′

x‘a→R x
′‘a

‘a→R ‘a′

x‘a→R x‘a′ (3.95)

We also provide the following subtyping rules, taking into account the variance of the lifetime

being quantified over

Γ;C ` x : ∀‘α � ‘c.T Γ;C ` ‘a � ‘b

Γ;C ` x‘a/x‘b

Γ;C ` x : ∀‘α � ‘c.T Γ;C ` ‘b � ‘a

Γ;C ` x‘a/x‘b (3.96)
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3.4.3 Universes

We may now implement the hierarchy of machine universes, parametrized by instants and

linearities

` Mi : ∀‘α � −∞,Π` : Lin.Ui+1 `

Γ;C ` A :Mi‘a `

Γ ` A type(`) (3.97)

Here,Mi‘a ` represents the universe of machine representable types with denotations of level

i which have linearity at most ` and live until at least the instant ‘a. Note that M′ia` : Ui+1

is an intuitionistic type: this is because types themselves are not subject to ownership rules.

We write

Li‘a ≡Mi‘a linear Ai‘a ≡Mi‘a affine Ri‘a ≡Mi‘a relevant Si‘a ≡Mi‘a scalar

(3.98)

Mi` =Mi ∞ `, Li ≡ Li ∞ Ai ≡ Ai ∞ Ri ≡ Ri ∞ Si ≡ Si ∞ (3.99)

and give subtyping rules

Γ;C ` ‘a � ‘b Γ;C ` ` � `′

Γ;C ` Mi‘b `/Mi+j ‘a `
′

Γ;C ` ‘a inst Γ;C ` ` : Lin

Γ;C ` Mi‘a `/Ui (3.100)

In particular, we treat machine universes as subtypes of intuitionistic universes to allow the

definition of families of machine-typed terms parametrized by intuitionistic constants. We

now extend the rules in Equation 3.87 to make a universally quantified machine type itself a

machine type (it is already an intuitionistic type since Mi‘a ` <: Ui) as follows

Γ, ‘αRR;C ` T : Mi‘b `

Γ;C ` ∀‘aRR.T : Mi‘b ` (3.101)
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We define variable sets, for v = fv, cv, as follows

v(Mi) = ∅ (3.102)

3.4.4 Variable Bindings

We introduce let-bindings with the following typing rule

Γ;x : A ` B type Γ;C ` a : A Γ, x← a : A;C ′ ` e : B Γ, x← a : A; ! ` e obsv(x)

Γ; bindΓ({(x : A,C, 0)}, C ′) ` let x = a in e : B[a/x]

(3.103)

and observation rules

Γ; ! ` a obsv(y)

Γ; ! ` let x = a in e obsv(y)

Γ; ! ` a obsv(y)

Γ; ! ` let x = a in e obsv(y) (3.104)

We give reduction rules

a→R a
′

let x = a in e→R let x = a′ in e

e→R e
′

let x = a in e→R let x = a in e′ (3.105)

and assign let-statements free variable set

fv(let x = a in e) = fv(a) ∪ (fv(e) \ {x}) (3.106)

and constant variable set

cv(let x = a in e) =


cv(a) ∪ cv(e) if x /∈ cv(e)

fv(a) ∪ (cv(e) \ {x}) otherwise

(3.107)
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The expression bindΓ({(x : A,C)}, C ′) in Equation , in essence, introduces new opaque in-

stants for the beginning/consumption/end of x (and, later, any components of x) while check-

ing x itself is used in a way which respects linearity constraints. It then removes uses of x,

and adds uses of the components of x from C, while constraining the newly added free in-

stants to occur at appropriate times based off the dependencies between x and other variables.

Formally, we use the following algorithm to compute bindΓ(X,C), where X is a set of fully

annotated variables with an optional flag b ∈ {0, 1}:

1. Initialize the result constraint set CR = (IR, OR, UR, RR) = C.

2. If, for any (x,Cx, b) ∈ X,

• u(x) occurs more than once in UR, or u(x) and p(x) both occur in UR or u(x)

occurs in UR and b = 1 and

• we cannot deduce that Γ, x←: A;Cx ` x copy

then return CR =! else remove any occurences of u(x) and d(x) from UR

3. Collect every instant ‘a of the form br, er, cr with X ∩ fv(r) 6= ∅ in I into a set IX

4. For each instant ‘a in IX , replace ‘a in IR with an opaque instant ‘ao(ua), written

‘ao(1) = ‘br(1), ‘io(0) = ‘er(0), or ‘io(1) = ‘cr(1) for instants br, er, cr respectively, for

convenience (but note that fv(‘io) = ∅ for all such instants; names like ‘br are just a

convenience, and, in particular, there is no actual dependency on r! We call this trick

skolemization.). Note that beginnings and consumptions become separated, but ends

do not.
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5. For each instant ‘i in IX , for each instant ‘j in I, if Γ;C ` i � j, add ‘io � ‘j to IR. if

Γ;C ` j � i, add ‘j � ‘io to IR.

6. For (x : A,Cx) ∈ X,

(a) Get the annotation A : U from the fully annotated term x : A.

(b) If U =Mi‘a `, then add ‘ex � ‘a to IR.

(c) For all u(r), p(r) ∈ Cx,

• If Γ;C ` r copy, then add br � ‘bx and ‘bx � cr to IR (see Figure 3.5b)

• Else add cr � ‘bx and ‘bx � er to IR (see Figure 3.5a)

(d) For d(r) ∈ Cx, add br � ‘bx and ‘bx � cr to IR (see Figure 3.5b)

(e) Catenate Cx with CR

7. Return CR

More than a syntactic convenience, let-statements allow us to convert a term with judge-

ment a : A to a term with judgement x ←: A, and hence, in particular, allow us to use the

lifetime construction operators b, c, e. More importantly, while denotationally the let operator

is transparent (see Equation 3.125 in Section 3.5.1), there is in general no rule requiring that

let x = a in e→ e (3.108)

This is important, as we view the let operator as introducing a new resource on execution,

taking ownership of whatever resources are owned by the expression a, and allowing it to be

used within the scope e. The instant bx refers to this moment. The resource is then freed

at some point between the end of the let-statement and the end of the current stack frame;
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r

c

(a) c(r) ≺ b(c) ≺ e(r)

r

u

(b) b(r) ≺ b(u) ≺ c(r)

r

b

(c) b(r) ≺ e(b) ≺ c(r)

Figure 3.5: Common patterns in constraint sets representing consumption, use, and borrowing
respectively. Here, c consumes r, u uses r and b borrows r. The patterns here are constructed
by the algorithm presented in Section 3.4.4. As usual, beginnings are solid black dots, con-
sumptions white dots, and ends crossed-out dots. Note that Figure 3.5c is actually implied
by a combination of Figure 3.5b and the lifetime bounds added in step 6b.

for such a resource x, cx refers to this moment, while e(x) refers to the last possible such

moment. After the bind-operation, these instants are converted to opaque instants, leaving

most of the constraints to be checked in the borrowck phase.

3.4.5 Borrow Checking

We now introduce the borrow checking algorithm; this will form the core of isotope’s type

system. In particular, given a context Γ, we introduce a function borrowckΓ(X,C) which, given

a set of constraints C, and a set of variable-constraint pairs X = {(x : A,Cx, b)}, returns the

constraints on a function with the variables in X returning a result having constraints C and

borrowing flag b.

We begin by defining an instant constraint set’s maximal constraint set as follows:

Definition 21. An instant constraint set I is maximal with respect to Γ;C if

∀‘a, ‘b ∈ IΓ;C ,Γ;C ` ‘a � ‘b ⇐⇒ ‘a ≡ ‘b ∨ (‘a, ‘b) ∈ I+ (3.109)

where IΓ;C is the set of instants appearing in Γ or C, along with ±∞.

We provide the algorithm maxconstrain(Γ, C) for computing a maximal constraint set given

Γ;C:
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1. If C =!, return !

2. Initialize a result constraint set CR = C, and a stack S = [].

3. For each (‘a, ‘b) ∈ C, push ‘a and ‘b.

4. For each ‘αRR ∈ Γ, push ‘α, and

• If α � ‘b or α � ‘b, push ‘b

• If α ∈ [‘b, ‘c], push ‘b and ‘c.

5. While S is nonempty, pop ‘a, then

• If ‘a ≡ ‘b ∧ ‘c, insert edges (‘a, ‘b), (‘a, ‘c), and push ‘b, ‘c

• If ‘a ≡ ‘b ∨ ‘c, insert edges (‘b, ‘a), (‘c, ‘a), and push ‘b, ‘c

• If ‘a ≡ is‘b, insert edge (‘b, ‘a) and push ‘b.

• If ‘a ≡ ip‘b, insert edge (‘a, ‘b) and push ‘a.

• If ‘a ≡ br, insert edges (‘a, cr), (‘a, er)

• If ‘a ≡ cr, insert edges (br, ‘a) and (‘a, er)

• If ‘a ≡ er, insert edges (br, ‘a), (er, ‘a)

• If ‘a ≡ ‘α,

– If α � ‘b ∈ Γ, insert edge (‘a, ‘b), and push ‘b.

– If α � ‘b ∈ Γ, insert edge (‘b, ‘a), and push ‘b.

– If α ∈ [‘b, ‘c] ∈ Γ, insert edges (‘b, ‘a) and (‘a, ‘c) and push ‘b and ‘c.

• If ‘a ≡ ‘x, do nothing.

6. For every node ‘a in the resulting graph I, add edges (‘a,∞) and (−∞, ‘a) to I.
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7. Return I.

We define consistent constraint sets as those which do not identify separated instants (i.e.,

unique opaque instants, ±∞, beginnings and consumptions). Formally:

Definition 22 (Separated Instants). Separated instants are defined as:

• Separated opaque instants ‘x(1)

• Infinities ±∞

• Beginnings br and consumptions cr

Definition 23. An instant constraint set I is locally consistent if, for all separated instants

‘i, ‘j,

(‘i, ‘j) ∈ I= =⇒ ‘i ≡ ‘j, (∞, ‘i) /∈ I+, (‘i,−∞) /∈ I+ (3.110)

Definition 24. A constraint set C is consistent in Γ if, for all separated instants ‘i, ‘j, we

have

‘i ≡ ‘j ∨ Γ;C 6` ‘i = ‘j (3.111)

Unfortunately, this definition is quite difficult to check, so we provide an easier one:

Definition 25. A constraint set C is weakly consistent in Γ if, for all separated instants ‘i, ‘j

in IΓ;C , we have

‘i ≡ ‘j ∨ Γ;C 6` ‘i = ‘j (3.112)

Claim 6. If Î ⊇ I is maximal in Γ, then C = (I,O, U,R) is consistent in Γ if Î is locally

consistent.
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Proof. Assume Î ⊇ I is maximal in Γ and locally consistent. Then, for all ‘a, ‘b ∈ I, we have

‘a, ‘b ∈ Î.

Assume that Γ;C ` ‘a = ‘b for separable instants ‘a, ‘b ∈ C ∪{±∞}; we hence have Γ;C `

‘a � ‘b and Γ;C ` ‘b � ‘a Since Î is maximal in Γ, we have either ‘a ≡ ‘b or (‘a, ‘b), (‘b, ‘a) ∈ Î+;

this would imply by definition that Î is inconsistent, yielding a contradiction. Therefore, by

definition, C is consistent in Γ.

Conjecture 1. If C is weakly consistent in Γ, then it is consistent in Γ

We then define a subroutine localck(I), which checks an instant constraint set I for local

consistency, as follows:

1. For each cycle c in I, treated as a graph, if c contains more than one separated instant,

return false.

2. return true.

Using this, we then define a subroutine cleanupΓ(C) which checks a constraint set for consis-

tency (assuming Conjecture 1) and then returns it with floating instants (defined as opaque

instants having only constraints involving other opaque instants) removed, as follows:

1. If C =!, return !, otherwise let C = (I,O, U,R)

2. Compute Î = maxconstrain(Γ, C)

3. If localck(Î) is false, then return !

4. For each connected component C in Î (taken as an undirected graph), if all elements

in C are opaque instants (i.e., of the form ‘x(u) for u ∈ {0, 1}), remove them from Î.
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Finally, we may define the borrow checking algorithm borrowckΓ(X,C) as follows:

1. Bind the variables in X to produce constraint set C ′ = bindΓ(X,C).

2. return cleanupΓ(C ′)

3.5 Machine Terms

In this section, we introduce machine terms, that is, terms subject to ownership typing.

We begin by introducing the denotation operator, which provides an internal denotational

semantics for isotope by converting any isotope term to a term in isotope’s intuitionistic

fragment. We then cover functions, inductive datatypes, pattern matching, fixpoints, and

builtin types such as arrays.

3.5.1 The Term and Denotation Operators

In Krishnaswami et al. [12], the universes of linear and intuitionistic types are connected by

an adjunction of functors F,G taking intuitionistic types to linear types and vice versa. In

this same spirit, we introduce the term operators (T, t) and denotation operator d to take

intuitionistic types to machine types and vice versa. Specifically, given an intuitionistic term

a : A, we define the machine term ta : TA to represent a computationally irrelevant (with

respect to machine terms) term of type A which can be used to carry intuitionistic data in

machine types, via the following rules

Γ; ! ` A : Ui
Γ;C ` TA : Si

Γ;C ` a : A

Γ;C ` ta : TA (3.113)
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Similarly, given a machine term a : A, we can consider it’s “meaning,” or denotation, as

a mathematical value (i.e., an intuitionistic term) to be given by the denotation operator

da : dA, via the following rules

Γ; ! ` A : Ui linear

Γ;C ` dA : Ui
Γ;C ` a : A

Γ;C ` da : dA (3.114)

These terms have free variable sets

fv(da) = fv(ta) = fv(a), fv(TA) = fv(A) (3.115)

On the other hand, both the t and d operators remove constancy constraints; that is,

cv(da) = cv(ta) = cv(TA) = ∅ (3.116)

We provide reduction rules

a→R a
′

da→R da′
a→R a

′

ta→R ta′
A→R A

′

TA→R TA′ (3.117)

We define the values of d via the contextual relation δ ⊂ i. For a computationally irrelevant

term ta, it’s “meaning” dta can most naturally be taken to be the meaning of the original

term a. This yields rules

(dta, da) ∈ δ (dTA, dA) ∈ δ (3.118)
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On the other hand, for a purely intuitionistic term t : T , we should have dt = t and dT = T ;

in particular, this gives us rules for typing univeres

(dUi,Ui) ∈ δ (dMi‘a `,Ui) ∈ δ (3.119)

In general, there are no rules for the d operator’s behavior on variable bindings: dx is just dx.

However, we may extend the substitution operator as follows: for a term s, s[a/dx] substitutes

a for every occurence of dx in the δ-normal form of s, and is undefined if x occurs otherwise.

We make the following, for now unproven, claim

Conjecture 2. For every well-typed term s and every variable x, (ds)[a/dx] is well-defined.

We use this operation to define rules for λ and Π as follows: as the operation d distributes

over (term) application and abstraction, we have rules

(d(st), (ds)(dt)) ∈ δ , (d(λx.s), λx.ds[x/dx]) ∈ δ (3.120)

which requires that the operation d distributes over Π as follows

(d(Πx : A.B),Πx : dA.dB[x/dx]) ∈ δ (3.121)

As d produces intuitionistic terms, it has the effect of ignoring instants and hence instant

parameters, giving rules

(d(x‘a), dx) ∈ δ (d(λ̂‘αRR.x), dx) ∈ δ (d(∀‘αRR.T ), dT ) ∈ δ (3.122)
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To enable the manipulations of terms behind the operator t, we introduce relation τ ⊂ i. We

introduce computation rule

((ta)(tb), t(ab)) ∈ τ (3.123)

This requires us to have T distribute over dependent function types as follows

(T(Πx : A.B), (Πx : TA.TB)) ∈ τ (3.124)

In spirit, this rule combined with Equation 3.118 makes d and (T, t) into a sort of adjunction

between intuitionistic terms and machine terms, but a proper categorical semantics is out of

the scope of this thesis.

Furthermore, we add rules for the particular case of the denotation of bound variables, in

particular within let-bindings, as follows

Γ, x← a : A;C ` (dx, da) ∈ δ (d(let x = a in e), (de)[da/dx]) ∈ δ (3.125)

3.5.2 Layout

As discussed in Section 2.5, to compile a type to a low-level language, we need to know it’s

layout, i.e., it’s size and alignment, to be able to allocate enough space for it on the stack and

to pass it to/from functions. Dynamically sized types such as variable-length-arrays, on the

other hand, must be handled behind pointers. We introduce operators sizeof and alignof as

follows:
Γ; ! ` A :Mi‘a `

Γ;C ` sizeof A : N
Γ; ! ` A :Mi‘a `

Γ;C ` alignof A : N (3.126)
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We define the value of these operators via the relation σ ⊂ i. We have not really introduced

any machine types beyond TA yet, so we only have one σ-rule to give so far:

Γ; ! ` A type

Γ;C ` (sizeof TA, Just 0) ∈ σ
Γ; ! ` A type

Γ;C ` (alignof TA, 0) ∈ σ (3.127)

In other words, squashed types are ZSTs. We say a type A is sized with respect to S, written

sizedS(A), if sizeof A and alignof A i-normalize to terms only containing variables defined in

Γ; i.e.

rfv(sizeof A) ∪ rfv(alignof A) ⊆ S (3.128)

3.5.3 Functions

We’re now ready to define the core language construct of isotope: machine function types.

The function types we provide here are represented by static function pointers; in particular,

they are unboxed, and we do not support closures. We provide formation rule

(sym(Γ), (xj : dAj)j<i; ! ` Ai : M‘ai `i)i

Γ, (xi, dAi)i; ! ` R : M‘ai `i

(sizedΓ(Ai))i

sizedΓ(R)

Γ;C ` Fn((xi : Ai)i)→ R : Si (3.129)

In brief, Equation 3.129 allows us to construct a machine function type (which is always

scalar, since it corresponds to a static function pointer) given argument types Ai and result

type R, with the constraint that each Ai and R must be sized with respect to the variables in

Γ, i.e., cannot be dynamic with respect to any of the arguments xi. Otherwise, it is possible

for types to depend on open non-intuitionistic terms, though we are restricted to depending

on these terms denotation (hence, dAi in the rule given). This is in contrast to Krishnaswami
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et al. [12], which disallows type dependency on open linear terms is disallowed entirely. Note

also the use of sym; this implies that function types may depend on instants invariantly or

covariantly, but not contravariantly. The given type theory has little support for contravariant

dependencies, but this could change in the future with some extensions, hence why they were

left in.

The free variable set of a function type is defined to be the expected value

fv(Fn((xi : Ai)i)→ R) = fv(R) \ {xi} (3.130)

However, the constant variable set definition takes into account the fact that, for a function

type to be valid, the result and argument types must be sized. Consequently, we pin any

variables the size and alignment of Ai and R depend on to be constants, as follows:

cv(Fn((xi : Ai)i)→ R) = rfv(sizeof R) ∪ rfv(alignof R) ∪
⋃
i

rfv(sizeof Ai) ∪ rfv(alignof Ai)

(3.131)

We give the expected denotation rule

(d(Fn(xi : Ai)→ R),Πx1 : dA1. ... Πxn : dAn.dR[xi/dxi]) ∈ δ (3.132)

We may now give the following introduction rule for Fn-types:

Γ, (xi ←: Ai)i;C, (u(xi))i ` r : R[dxi/xi]i

xi /∈ cv(r : R[dxi/xi]i)

(Γ, (xi ←: Ai)i; ! ` r obsv(xj))j

Γ; borrowck({(xi : Ai,∅)i}, C) ` fn((xi : Ai)i) 7→ r : Fn((xi : Ai)i)→ R (3.133)

Note, in particular, the requirement that none of the function’s variables xi appear in the
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constant variable set of the function’s result r; this ensures that no constant values (such as

other functions) depend on any of the function’s variables. We also require that r observe all

the function’s arguments; hence, we can assume a function call observes all it’s arguments.

We define a function’s free variable set as expected

fv(fn((xi : Ai)i) 7→ r) = fv(r) \ {xi} (3.134)

On the other hand, since we require functions themselves to be constant, we define a func-

tion’s constant-variable set to include any free variables in the result (minus the function’s

arguments)

cv(fn((xi : Ai)i) 7→ r : F ) = cv(F ) ∪ (fv(r) \ {xi}) (3.135)

We now provide a typing rule for function application, which works as expected

Γ;C ` f : Fn(xi : Ai)→ R (Γ;Ci ` ai ←: Ai([daj/xj ])j<i)i

Γ;C, (Ci)i, u(ai)i ` f (ai)i : R([dai/xi])i (3.136)

Since the function’s result must observe all it’s arguments by Equation 3.133, we have simple

observation rule
Γ; ! ` f : Fn(xi : Ai)→ R ∃j,Γ; ! ` aj obsv(x)

Γ;C ` f (ai)i obsv(x) (3.137)

In particular, as ai observes itself (by Equation 3.39), we have f (ai)i obsv(ai). Note, however,

that, as for let-statements, there is no reduction rule implying

(fn(xi : Ai) 7→ r) (ai)i → r[ai/xi]i (3.138)
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However, on the denotation level, we provide rule

(d(fn(xi : Ai) 7→ r), λx1. ... λxn.dr) ∈ δ (3.139)

Combined with Equation 3.120, this gives the expected result that

(d(((fn(xi : Ai) 7→ r) (ai)i)), dr[dai/dxi]i) ∈ δ (3.140)

3.5.4 Fixpoints

We now define the notion of a machine fixpoint as follows:

Definition 26 (Machine Fixpoint). A machine fixpoint definition is an expression of the

form Phi([fj : Fj = Dj ]) where each fi is a variable, each Fi is an Fn-type, and each Di is a

term. We treat this as a recursive definition of each function fi in terms of the symbols {fj};

in particular, we define

dPhi([fj : Fj = Dj ]) = Fix(fj : dFj = dDj [f`/df`]`) (3.141)

We say a machine fixpoint definition F = Phi([fj : Fj = Dj ]) is well-formed in context Γ;C

if:

• Γ, (fj : Fj)j ;C ` Di : Fi

• dF is well-formed in Γ;C, and in particular passes the termination check.
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For a well-formed machine fixpoint definition F = Phi([fj : Fj = Dj ]), we provide typing rule

(Γ, (fj : Fj)j ;Ci ` Di : Fi)i

Γ; (Ci)i ` F :: fk : Dk (3.142)

and denotation

(d(F :: fi), (dF) :: fi) ∈ δ (3.143)

as well as free-variable and constant sets

fv(F :: fi) =
⋃
i

fv(Dj) \ {fk}k, cv(F :: fi) =
⋃
j

cv(Dj) \ {fk}k (3.144)

We furthermore provide reduction rules

Γ, (fj : Fj)j ;C ` Di →R D
′
i

Γ;C ` Phi([fj : Fj = Dj ]) :: fk →R Phi([fj : Fj = D′j ]) where j 6= i =⇒ D′j = Dj (3.145)

Γ, (fj : Fj)j ;C ` Fi →R F
′
i

Γ;C ` Phi([fj : Fj = Dj ]) :: fk →R Phi([fj : F ′j = Dj ]) where j 6= i =⇒ F ′j = Fj (3.146)

3.6 Data Structures

We may now describe the final component of the isotope language, namely, it’s data struc-

tures. We begin by defining a set of scalar integers of different widths, as well as array and

pointer types, with the latter subdivided into borrowed pointers (references) and owned point-

ers (boxes). We do not yet provide rules for unboxed owned pointers (i.e., &mut T). We then

proceed to give rules for casting types between layouts. Finally, we define a framework of

machine inductive types as a generalization of Rust’s enum, with pattern matching on such
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types a generalization of Rust’s match.

3.6.1 Integers

We begin by defining a collection of primitive scalar types, u1, u8, u16, u32, u64 representing 1,

8, 16, 32, and 64-bit integers respectively. For simplicity, we will assume pointers are 64-bits

wide; in reality, a separate usize type is provided. We provide typing rules

n ∈ {1, 8, 16, 32, 64}
` un : S1

Γ ` m : N
Γ ` mun : un (3.147)

where mun represents an n-bit integer literal, e.g. 74u8. We support hexadecimal, octal, and

binary notations with the usual definitions. As a simplifying assumption, we define the size

and alignment of these types as usual on x86-64 Linux, namely

(sizeof u1, 1) ∈ σ (alignof u1, 1) ∈ σ (sizeof u8, 1) ∈ σ (alignof u8, 1) ∈ σ

(sizeof u16, 2) ∈ σ (alignof u16, 2) ∈ σ (sizeof u32, 4) ∈ σ (alignof u32, 4) ∈ σ

(sizeof u64, 8) ∈ σ (alignof u64, 8) ∈ σ
(3.148)

We introduce denotations

(d(un),Bn) ∈ δ (d(mun), truncnm) ∈ δ (3.149)

Similarly, we introduce the usual collection of basic arithmetic and logical operations, e.g., n-

bit integer addition iaddn : Fn(un, un) → un, with the expected denotations, e.g. d(iaddn) =

addn. We also provide cast operations zextn,m and sextn,m from un to um which provide

zero-extended and sign-extended integer casts respectively.
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3.6.2 References

We now introduce our first actual ownership type: the (borrowed) reference type &‘a T ,

representing a value of type T which is valid to read or observe (but not use!) up to time ‘a,

with formation rule
Γ;C ` T :Mi‘a `

Γ;C ` &‘a T : Si‘a (3.150)

This has introduction rule
Γ;C ` x←: T

Γ;C ` &x : &cx T (3.151)

and elimination rule

Γ;C ` r ←: &‘a T Γ, x←: T ;C ′ ` e : B

Γ; bindΓ({(x : T, (C, rr, cx � ‘a), 1)}, C ′) ` let x = ∗r in e : B (3.152)

In short, this lets us use a reference r : &‘a T as a value of type T so long as such uses are:

• Before ‘a

• After r is created

• Do not consume T , unless T is scalar (i.e. T type(scalar)).

In particular, then, we can use a reference to a scalar almost like a value of that scalar, while

references to linear types can really only be used to make other references (e.g., by projection

operations, which take &T → &U ; if U is scalar, we can then use that). References, being

represented by simple pointers, always have the same alignment and size, namely

(sizeof &‘aT, sizeof u64) ∈ σ (alignof &‘aT, alignof u64) ∈ σ (3.153)
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Whether a value is referenced or not is transparent to it’s denotation, i.e.

(d(&‘aT ), dT ) ∈ δ (d(&t), dt) ∈ δ (3.154)

3.6.3 Boxing

We now introduce a type of owned references, or boxes, with the following formation rules

Γ;C ` T :Mi‘a `

Γ;C ` Box T : Li‘a (3.155)

This is our first bona-fide linear type: boxes must be unboxed or forgotten in a valid isotope

program. We can create a box by “boxing” a value, as follows

Γ;C ` t←: T

Γ;C, u(t) ` box t : Box T

Γ; ! ` t obsv(x)

Γ;C ` box t obsv(x) (3.156)

and destroy a box by “unboxing” it

Γ;C ` t←: Box T

Γ;C, u(t) ` unbox t : T

Γ; ! ` t obsv(x)

Γ;C ` unbox t obsv(x) (3.157)

or by leaking the underlying memory and forgetting it as follows:

Γ;C ` t←: Box T Γ;C ` T :Mi‘a `

Γ;C, u(t) ` forget t : &‘a T Γ;C ` forget t obsv(t) (3.158)

Note that, unlike unbox, forget does not observe anything it’s argument observes (though it

observes it’s argument), as there is no guarantee that it will ever be used. Sometimes, we

want to access the inside of a box without destroying it; to do so, we can get a pointer to the
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inside of a box via the deref operator as follows:

Γ;C ` r : &‘a Box T

Γ;C ` deref r : &‘a T (3.159)

As with references, all boxes fit in a pointer, i.e.,

(sizeof Box T, sizeof u64) ∈ σ (alignof Box T, alignof u64) ∈ σ (3.160)

and boxes are denotationally transparent, i.e.,

(d(Box T ), dT ) ∈ δ (3.161)

(d(box t), dt) ∈ δ (d(unbox t), dt) ∈ δ (d(forget t), dt) ∈ δ (d(deref t), dt) ∈ δ

(3.162)

3.6.4 Inductive Data

We can now define the isotope analog to Rust’s enum types, Data-declarations, as follows

Definition 27 (Data Declaration). A data declaration is an expression of the form D =

Data([Ij : Aj ] := [cjk : Cjk]) where each Aj is a machine arity of sort sj and each Cjk is a

machine constructor for Ij. We define the denotation of a data declaration as follows:

dData([Ij : Aj ] := [cjk : Cjk]) ≡ Ind([Ij : dAj ] := [cjk : dCjk/[I`/dI`]`]) (3.163)

We say a data declaration D ≡ Data([Ij : Aj ] := [cjk : Cjk]) is well-formed in Γ;C, written

Γ;C ` D ok, if
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• Aj and Cjk are well-formed in Γ;C

• For each field Fijk of each Cjk, we have 6

Γ;C ` Fijk : sj (3.164)

• For each field Fijk of each Cjk, we have

Γ;C ` sizedΓ(Fijk) (3.165)

In particular, the size of any field Fijk must not depend on any of the defined inductive

types Ij. Note this does not forbid recursive types in general, as, e.g., Box Ij would be

permitted since it’s size and alignment are independent of Ij.

• dD is well-formed (as an inductive definition) 7

We provide typing rules

Γ;C ` D ok

Γ;C ` D :: Ij : Aj [D :: Ik/Ik]k

Γ;C ` D ok

Γ;C ` D :: cjk : Cjk[D :: Ik/Ik]k (3.166)

and denotations

(d(D :: Ij), (dD) :: Ij) ∈ δ (d(D :: cjk), (dD) :: cjk) ∈ δ (3.167)

6This condition implies the condition from Definition 18 for inductive types, namely that Γ;C ` Cjk : sj ,
but is strictly stronger in the following sense: the type constructor Fn always discards linearity and lifetime
information, i.e., produces a type of type Si. Hence, requiring the fields to be of type sj is a stronger
requirement.

7This condition in essence delegates checking types of constructor for strict positivity to the purely inductive
fragment of isotope.
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In general, we will often omit assumptions of the form D ok for clarity, as for inductive types.

A machine arity of sort s is simply the equivalent of an arity of sort s for machine universe

sorts s =Mi‘a `; formally:

Definition 28 (Machine Arity). A type T is a machine arity of sort Mi‘a ` if

• T =Mi‘a `

• T = Πx : U.V where U is an arity of sort Mi‘a `

A type T is an arity if there exists a universe Ui such that T is an arity of sort Ui.

In particular, N → S3 is a machine arity, but neither of N → U5 (since the target is not a

machine universe) or S3 → N (since the target is not a universe at all) are arities. Indeed, we

have

Claim 7. If A is a machine arity of sort Mi‘a `, then dA is an arity of sort Ui.

Proof. Let A be a machine arity of sort Mi‘a `. We proceed by induction: assume that for

all subterms T of A, if A is a machine arity of sortMi‘a `, then dV is an arity of sort Ui. By

definition, we have either that

• A =Mi‘a `, in which case dA = Ui is trivially an arity of sort Ui.

• A = Πx : U.V . By induction, dV is an arity of sort Ui, and hence by definition

dA = Πx : dU.dV is an arity of sort Ui since dU : Ui

Similarly, a machine constructor for Ij is the machine universe equivalent of a type of con-

structor for Ij .
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Definition 29 (Machine Constructor). A type T is a machine constructor for I, where I is

a variable, if

• T ≡ I t1 ... tn. In this case, T is said to have no fields.

• T ≡ Fn(x1 : F1, ..., xn : Fn) → I t1 ... tn. In this case the types F1, ..., Fn are called the

fields of T .

In particular, Fn(x : u32, y : u32) → I a b is a machine type of constructor for I, but neither

of Πn : N.Fn(a : [u32;n]) → I n (since it is not an Fn-type) or Fn(x : u32, y : u32) → u32

(since the target is not I) are types of constructor for I. Analogously to arities, we claim

Claim 8. If A is a machine constructor for Ij, then dA[I/dI] is a type of constructor for I.

Proof. Let A be a machine constructor for Ij . Then by definition,

• A ≡ I t1 ... tn, in which case

dA[I/dI] = (dI t1 ... tn)[I/dI] = ((dI) (dt1) ... (dtn))[I/dI]

= (dI)[I/dI] (dt1)[I/dI] ... (dtn)[I/dI] = I (dt1)[I/dI] ... (dtn)[I/dI] (3.168)

which is by definition a type of constructor.

• A ≡ Fn(x1 : F1, ..., xn : Fn)→ I t1 ... tn, in which case

dA[I/dI] = d(Fn(x1 : F1, ..., xn : Fn)→ I t1 ... tn)[I/dI]

= (Πx1 : dF1. ... .Πxn : dFn.dI (dt1) ... (dtn))[I/dI]

= Πx1 : dF1[I/dI]. ... .Πxn : dFn[I/dI].I (dt1)[I/dI] ... (dtn)[I/dI] (3.169)
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which is a type of constructor since I (dt1)[I/dI] ... (dtn)[I/dI] is.

We will lay out isotope data-declarations in memory like Rust enums: a tag indicating

which constructor is in use, followed by the fields of that constructor (in order). In particular,

therefore, we define where Fijk are the fields of Cjk,

(sizeof (Data([Ij : Aj ] := [cjk : Cjk]) :: I`), enumsize([[Fijk]i]k)) ∈ δ (3.170)

(alignof (D :: I`), A) ∈ δ (3.171)

where

A = max{tagsize, (alignofFi`k)ik}, tagsize = dlog2N/8e (3.172)

where N is the number of constructors cj1, ..., cjN for Ij and enumsize([[Fijk]i]k)) is the size

required to store Ij as an enum in the C layout, e.g.

enumsize([[Fijk]i]k)) = max
k

(structsize([(tagsize, tagsize), (sizeof Fijk, alignof Fijk)i], A))

(3.173)

where structsize([(si, ai)]i, a) is the size of a struct with ordered fields having size/alignment

(si, ai) with alignment a in the C ABI with ZSTs (i.e., allowing types of size 0, as in Rust, but

unlike, e.g., C++). We omit this definition for simplicity, as it has no bearing on the theory.
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3.6.5 Pattern Matching

We may now introduce the match-statement, which serves as the machine-type analog of the

case-statement, with the following typing rule

Γ; ! ` F : dI :: Ij →Mi‘a `

Γ;C ` i←: I :: Ij

(Γ, (pn : Pkn)n;Ck ` βk : F (d(ck (pn)n)))k

Γ;C, p2u

(
i,
⋃
k

(borrowckΓ({(pn, p(i), 0)n}, Ck))k

)
` I :: matchIj i {(ck(pn)n 7→ βk, )k} : F (i)

(3.174)

where p2u(i, C) is defined as follows:

• Remove all occurences of p(i) from C, and if any such occurences were found, add one

occurence of u(i).

Breaking this down, it states that

• Given a machine type family F : dI :: Ij → Mi‘a ` parametrized by the denotation of

I :: Ij ;

• Given a variable i←: I :: Ij under constraints C

• Given branches ck(pn)n 7→ βk,, where each βk is of type F (d(ck (pn)n))) under con-

straints Ck; if C ′k is the result of borrow checking Ck as if it was a function (but, unlike

static functions, branches do not make their dependencies constant) with parameters

pn.

• We may type the match statement I :: matchIj i {(ck(pn)n 7→ βk, )k} as F (i) under

constraints C, p2u (i,
⋃
k(C

′
k)); i.e., marking i as fully used if any branch partially uses

i, while otherwise taking the union of the usages, dependencies, and constraints of each

individual branch.
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We introduce an observation rule

(Γ, (pn : Pkn)n; ! ` βk obsv(x))k

Γ;C ` I :: matchIj i {(ck(pn)n 7→ βk, )k} obsv(x) (3.175)

which, in essence, states that “a match statement observes something if all it’s branches do

so,” and
((Γ, (pn : Pkn)n; ! ` βk obsv(p`))k)` Γ; ! ` i obsv(x)

Γ;C ` I :: matchIj i {(ck(pn)n 7→ βk, )k} obsv(x) (3.176)

i.e., “a match statement observes something if it’s argument i does so and all it’s branches

observe all components of i visible to that branch, and therefore, implictly, observe i.”

We give match statements denotations in terms of case statements, as expected:

(
d
(
I :: matchIj F i {(ck(pn)n 7→ βk, )k} : F (i)

)
, (dI) :: caseIj{(ck(dpn)n) 7→ βk, )k}

)
∈ δ

(3.177)

3.6.6 Casting

Sometimes, we wish to control the size and alignment of types without resorting to boxing

(which has a high runtime overhead, as it requires memory allocations) or references (which

require introducing the complexity overhead of instant parameters, and also potentially the

runtime overhead of “pointer chasing”). To remedy this problem, we introduce casting. We

begin by giving a type formation rule

Γ; ! ` s : N Γ; ! ` a : N Γ;C ` T :Mi‘a `

Γ;C ` cast T s a :Mi‘a ` (3.178)
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This type represents the “values of T which can fit in an allocation with size s and alignment

a.” This is represented by reduction rules

(sizeof(cast T s a), s) ∈ σ (alignof(cast T s a), a) ∈ σ (3.179)

In particular, if s = sizeof T and a = alignof T , then this type can be identified with T ; we

represent this by introducing reduction rule

(cast T (sizeof T ) (alignof T ), T ) ∈ σ (3.180)

Similarly, casts “overwrite” each other as follows:

(cast (cast T s a) s′ a′ T ), cast T s′ a′) ∈ σ (3.181)

To construct terms of cast type, we introduce the as expression, with the following syntax:

Γ;C ` x : A

Γ; ! ` s : N
Γ; ! ` a : N

Γ; ! ` p : Le (sizeof T ) s

Γ; ! ` q : Le (alignof T ) a

Γ;C ` x as s a p q : cast T (sizeof T ) (alignof T ) (3.182)

We will often omit the proof terms p, q when sufficiently trivial (e.g., casting between constant

sizes). We also extend the deref operator to cast references:

Γ;C ` c : &‘a cast T s a

Γ;C ` deref c : &‘a T (3.183)
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As with boxing, casting is transparent to denotation:

(d(cast T s a), dT ) ∈ δ (d(x as s a p q), dx) ∈ δ (d(x as s a p q), dx) ∈ δ (3.184)

3.6.7 Arrays

Given a machine type A :Mi‘a` and an integer n, we introduce arrays of length n [A;n] with

the following formation rule

Γ;C ` A :Mi‘a` Γ; ! ` n : N
Γ;C ` [A;n] :Mi‘a` (3.185)

and introduction rule
(Γ;Ci ` ai : A)i=1..n

Γ; (Ci)i ` [(ai)i] : [A;n] (3.186)

Arrays are laid out as in C, consequently, we have

(sizeof [T ;n], n · sizeof T ) ∈ σ (alignof [T ;n], alignof T ) ∈ σ (3.187)

We will treat an array as a function from {0, ..., n − 1} to A, consequently, we introduce

denotation

(d[A;n],Fn → A) ∈ δ (d[(ai)i], switchA (d ai)i) ∈ δ (3.188)

We introduce an indexing operation:

Γ;Ca ` a : &[A;n] Γ;Ci ` i : u64 Γ; ! ` p : Lt (di) n

Γ;Ca, Ci ` indexp a i : &A (3.189)
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We do not really support arrays of linear types at the moment, as there’s no way to observe

them beyond using them completely. Similarly, even affine array support is somewhat lack-

lustre, as using one component uses the entire array. These are actually both drawbacks of

the Rust type system itself, which uses unsafe library functions to fill in the gaps. I began

work on an extension of the project to rectify this, but did not complete it on time.
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Chapter 4

Compilation

In Chapter 3 we described the isotope language at a high level and gave a preliminary spec-

ification for it’s type system and features. In this chapter, our goal is to give an algorithm

for compiling realizable isotope machine terms, as defined in Section 3.5, to a bare-metal

program (i.e., one requiring only minimal runtime support). Rather than directly output

assembly or an intermediate representation, as discussed in Section 2.4, we will instead de-

scribe an algorithm targeting the C programming language for simplicity of exposition to

avoid irrelevant implementation details.

In Section 4.1, we give a description of the process of compiling a closed isotope function;

we begin by recalling the definition of temporal dependence graphs from Chapter 3 and how

we can construct one from the constraint set C of a term Γ;C ` a : A. We then show how to

define and actually compile a function at a high level by traversing it’s graph and compiling

it’s subterms.

In Section 4.2, we then proceed to describe in detail the code that “node lowering” step

described previously in the algorithm from 4.1 generates for each kind of machine term, along
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with some representation details. This completes the algorithm from 4.1, giving a complete

pipeline from fully annotated isotope term to pseudo-C program; with some additional theo-

retically irrelevant implementation details handled, this should allow implementing a compiler

for isotope terms.

4.1 Function Compilation

The goal of this Section is to define how to construct a fully-annotated isotope function

f ≡ fn((xi : Ai)i) → r, assuming that, for every (non-instant) free variable v ∈ fv(r), we’ve

compiled v to a constant C value cv into a cache C. In particular, assume we are given

derivation

Γ, (xi ←: Ai)i;C, (u(xi))i ` r : R[dxi/xi]i

xi /∈ cv(r : R[dxi/xi]i)

(Γ, (xi ←: Ai)i; ! ` r obsv(xj))j

Γ; borrowck({(xi : Ai,∅)i}, C) ` fn((xi : Ai)i) 7→ r : Fn((xi : Ai)i)→ R (4.1)

with borrowck({(xi : Ai,∅, 0)i}, C) 6=! We compute the temporal dependence graph of f to be

given by

Î = maxconstrain(Γ, bind({(xi,∅, 0)i}, C)) (4.2)

Since borrowck 6=!, we note that Î is consistent, and hence in particular never identifies two

opaque beginnings ‘bx (where an opaque beginning is the result of applying ). We may hence

define a strict partial order � on variables where

x �f y ⇐⇒ (‘bx, ‘by) ∈ Î+ (4.3)
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Note that we assume variable names are unique throughout the definition of r, α-converting

as necessary to achieve this. Hence, to compile a function, we proceed as follows, given name

N

1. Generate a C function with prototype

R N (x1 : A1, ..., xn : An) (4.4)

where, given a sized machine type T , T is an array of bytes with size sizeof T and

alignment alignof T . We assume for simplicity that types are just automatically cast to

each other if of compatible size and alignments, viewing them as “bags of bytes” rather

than structured values.

2. Compile r :: R[dxi/xi]i as r in f with cache C ∪ {xi 7→ xi}i

3. Generate the statement return r;

4. Close the function scope; the generated function N is the desired result.

In the next section, we define how to compile a fully annotated term r as r in f . Note that,

throughout this algorithm, we rename variables as appropriate to avoid collisions.

4.2 Term Compilation

In this section, we define term compilation recursively for each kind of machine term. If term

compilation is not defined for a particular kind of term, then compilation fails and we say

that term is unrealizable (at least in the current implementation!)
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4.2.1 Variables

To compile a variable x : A as r in f with cache C, if x 7→ cx ∈ C for some cx, generate the

statement

A r = cx; (4.5)

else fail.

4.2.2 Let Statements

To compile a let-statement let x = a : A in e : B as r in f with cache C,

1. Compile a as x in f with cache C.

2. Compile e as r in f with cache C ∪ {x 7→ x}.

4.2.3 Primitives

To compile a literal ` : L as r, generate the statement

L r = `; (4.6)

(e.g., for 64u8 : u8, generate char r = 64;). Similarly, to compile an arithmetic operation,

e.g. add64, to r, just define a nested function, e.g.

uint64 t r(s uint64 t, t uint64 t) { return s + t; } (4.7)

4.2.4 Function Calls and Fixpoints

To compile a function call f ′ t1 ... tn : A to r in f with cache C,
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1. Compile f ′ to f in f with cache C, and compile each ti to ti in f with cache C, such

that the order they are compiled in respects �f .

2. Generate A r = f(t 1,...,t n)

To compile a fixpoint Fix([fj : Fj = Dj ]) :: fj ;

1. For each member of the fixpoint fk, if already defined, let it be the value f k (renaming

as necessary to avoid collisions, e.g. via hash consing), otherwise

(a) For every value of the fixpoint which does not have one yet, generate a prototype

Rk fk ((Aik)i) (4.8)

for Fk = Fn((Aik)i)→ Rk

(b) Generate the function Dk with cache C ∪ {fk 7→ fk}

2. Generate statement void* r = f k;

4.2.5 References

To compile a reference &x as r in f with cache C,

1. Compile x as x in f with cache C

2. Generate void* r = &x;

4.2.6 Boxes

To compile a box box x : Box T as r in f with cache C,
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1. Compile x as x in f with cache C

2. Generate void* r = malloc(sizeof(T));

3. Generate *r = x;

Similarly, to compile an unboxing unbox x : T as r in f with cache C,

1. Compile x as x in f with cache C

2. Generate T r = *(T*)x;

3. Generate free(x);

whereas, to compile a forget-operation forget x as r in f with cache C, simply compile x, as

forgetting is a no-op.

4.2.7 Casting

To compile a cast x add s a p q as r in f with cache C, simply compile x, as casting is implicit.

4.2.8 Constructors and Pattern Matching

Given a data declaration D = Data([Ij : Aj ] := [cjk : Cjk]), define it’s associated struct for Ij

to be given by

struct Ij {tag : TagNj
, union {(struct {(ai : Pijk)i})kcjk; }; } (4.9)

where Aijk are the parameters of Cjk, Nj is the number of constructors cjk for Ij and TagN

is an integer type holding values up to at least N . We may hence compile a constructor cjk
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to r by defining anonymous function

Ij r((a i: P ijk) i){return{tag = k, cjk = {(ai = ai)i}}; } (4.10)

We may then define a match-statement D :: matchIj i {(cjka1, ..., anj 7→ βk)k} as r in f with

cache C as follows, where R is the result type of the match statement:

1. Generate the statement R r;

2. Compile the term i as i in f with cache C

3. Begin to generate a switch-statement as follows:

switch (i.tag){ (4.11)

4. For each k,

(a) Generate a branch case k :.

(b) Compile the term βk in f with cache C ∪ {ai 7→ i.cjk.ai} as b

(c) Generate the statements r = b; break;

5. End the switch statement.
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Chapter 5

Implementation

In this chapter, we give an overview of the two partial implementations of isotope we de-

veloped over the course of this project, giving a brief description of the basic architecture,

design choices, and achievements of both. In Section 5.1, we give a brief overview of both

implementations. Finally, in Section 5.2, we give a more detailed description of some of the

features and design decisions of each implementation, as well as the contrasts between them

and the evolution from the old to the new design.

5.1 isotope Implementations

We provide a partial implementation of a type checker and interpreter for a variation of the

isotope language, as well as an implementation of a fragment of an earlier version of the

type theory before major changes were made midway in the project, totaling 17,000 lines and

8,000 lines of Rust source respectively. The current implementation supports the majority

of the Calculus of Constructions, though support for inductive types remains unfinished;

however, only the older codebase has a working implementation of the borrowck algorithm.
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As the type system described in this thesis is undecidable, we have had to make significant

adaptations in the theory so as to make it implementable efficiently in code. In particular,

the implementation and it’s relationship to the system described in this paper are unverified,

since the rules themselves are still a work in progress (with many extracted by simplifying

the rules encoded in the isotope source).

Both our implementations of isotope are primarily designed to be API-oriented; that is,

we define an API surface for programmatically constructing and reasoning about both fully-

annotated and partially-annotated terms. Both versions of the API supported type checking

(in the fragments of the language each supported), (basic) inference and reduction, as well

as pattern matching on term ASTs (represented in memory somewhat more abstractly as

graphs). Both implementations also included documentation (with every function receiving

at least a line of description) generated using the Rust package manager’s, cargo, builtin

documentation functionality. We also provide a suite of numerous unit tests, integration

tests, and doctests, which can be run using cargo’s inbuilt testing functionality.

We also provide a parser (written using the nom parser combinator library [6]) and read-

evaluate-print-loop (REPL) program for each implementation, which uses the implementa-

tion’s API as a library. This serves as an integration test of the API, an example for using

advanced API functionality such as type inference (API consumers should usually be building

fully annotated-terms, since this is more efficient), and as a debugging utility. The current

version of isotope also provides a prettyprinting utility, written using a Rust implementa-

tion, pretty [21], of Wadler-style prettyprinting [19]. Again, however, this is mostly intended

as a debugging tool, and therefore the syntax is not very pretty or concise.

Since the first implementation of isotope was flawed, due to an over-complicated imple-
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mentation of constraint sets and due to the fact that it used variable names in lieu of de

Bruijn indexes; hence, we eventually decided to start fresh with a second implementation,

which unfortunately we were not able to complete in time. However, as isotope was specif-

ically intended as an exploration of the design space, I believe this outcome to be at least

somewhat successful. Hence, we will attempt to go over the lessons learned in drafting both

designs, as well as some other approaches we considered during the design process in sections

5.2.

5.2 Features and Design

In this section, we give a brief overview of the features and design of each implementation of

isotope, while discussing lessons learned along the way. Even though neither implementation

is complete, both have contributed immensely to the abstract algorithms described in Chapters

3 and 4, and we believe the new implementation is only about a month or two from completion.

We will attempt to describe both the old constraint set design and the incomplete new design

in this section.

5.2.1 Equality

One of the most challenging features to implement in either API was equality checking between

terms; while every well-typed term in the CoIC (and hence, hopefully, isotope) has a normal

form [17, 2], simply normalizing every term and checking them for syntactic equality is quite

inefficient, especially if normal forms had to be recomputed. The old version of isotope did

basically this, but stored a lazily initialized, reference-counted pointer to the normal form of

a term along with every term; hence, normalization would only have to occur once per term.
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This still didn’t work very well, however, as the old version of isotope also used variable

names rather than de-Bruijn indexes, which meant that quotienting terms under α-conversion

remained challenging, often requiring a full substitution for every equality check.

The second version of isotope rectified this by introducing the notion of an equality

context Ξ, which, in essence, exposed a method to check whether two terms were definitely

equal, definitely disequal, or potentially either, given a notion of equality. Terms were then

compared recursively as follows:

1. Given expressions a, b;

2. Check if a, b are definitely equal or disequal in the context Ξ, if so, return which

3. Otherwise, if a, b are the same kind of expression, perform a recursive comparison of

each component of the expression.

We provided functionality for explicitly extending a context Ξ with equality/disequality re-

lations between normalized terms by building modified a disjoint set forest of terms (indexed

into a set via O(1) hashing, as described in 5.2.3), as well as a wrapper interface for a context

Ξ which would:

1. Given expressions a, b;

2. Check if a, b were definitely equal or disequal in Ξ, if so, return the result

3. Normalize a, b according to some configuration, cache the results in Ξ, and return any

deductions made about equality

The current API allows users to pass an equality context Ξ as part of the typing context for all

type checking and inference operations; by default, they can simply use the null context (which
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requires syntactic equality) or a fully normalizing context (replicating the behaviour of the old

implementation). This allows API users the freedom to define quite complex custom notions

of equality to be used in type checking (e.g., theoretically, extensionally using the results of

an SMT solver), though we only tested such functionality on somewhat artificial notions of

equality. More importantly, however, it allowed very efficient handling of normalization and

equality checking, as the API user can explicitly control when and how often normalization

occurs without worrying about correctness by using the “safe” portion of our API, which only

allows defining subrelations of the judgemental equality relation.

Equality contexts which perform reduction may also set a maximum number of operations

to perform as well as a maximum reduction depth, and may even define a custom reduction

strategy; they may also be passed program annotations denoting, e.g., maximum recursion

depth for or a particular property of a certain term. This design decision was originally meant

to support nonterminating terms, inspired by Zombie [16].

5.2.2 Constraints and Borrowing

The original isotope implementation inferred constraint sets for terms automatically, which

were stored in a pointer in the term data structure. In particular, this allowed us to forego

assigning machine terms unique names, as the constraint set was computed directly and

optimally from the structure of the term. Since the constraint sets for different terms often

had extensive data sharing between them, we required that a context was used to construct

terms, which would perform hash-consing on constraint sets, which were implemented using

array-mapped hash tries. A function was implemented which borrow-checked constraint sets

within a given scope; on construction of a machine function, the result of the borrow checking
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function was set as the term’s constraint set, as in the formalism in Chapter 3. A bug in the

trie implementation we used to implement constraint sets led to us using a temporary, highly

inefficient implementation using regular hash maps, and eventually, the issues this led us to

decide to rewrite the codebase altogether.

The new version of isotope instead required all machine terms to be tagged with a unique

ID (intuitionistic terms were identified by virtue of being untagged), with IDs combined with

de-Bruijn indexes for scope depth (for example, a term of the form λx.fn(x : A) 7→ r would

have all subterms of r be assigned IDs with a de-Bruijn index of 2, since they are within the

scope of both the machine function and lambda function). This additional scope information

was to be used to generate anonymous, unboxed closure types, as were available in Rust.

Constraint sets were to be implemented externally as part of the typing context (rather than as

intrinsic parts of individual terms), and were to have a separate inference algorithm, as in the

current formalism in Chapter 3; unfortunately, we did not get this far in the implementation.

5.2.3 Term Representation

In both implementations, we represent terms as a Rust enum behind an atomically reference-

counted pointer; in particular, both implementations provide an entirely thread-safe API in-

terface (but not, as of now, parallelized). The majority of the API surface for terms is exposed

in both implementations via a Value interface implemented both by the terms themselves and

the variants of the term enum, with most Value methods on terms being simple delegations to

the enum variants (with, in some cases, e.g. normalization for the old implementation, some

caching).

Both implementations require that term variants store a 64-bit “hash code,” computed by
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hashing the data contained in each term; the hash of a term is then defined to be the hash

of it’s hash code. This allows us to hash terms in O(1) time, with hashcodes themselves pre-

computed in O(1) time at term constructions. This is important, as both implementations

make extensive use of hash-tables of terms, which would otherwise be inefficient due to the

potential for terms to be very large and spread out throughout memory (due to the extensive

use of reference-counted pointers).

The presence of hash-codes allows a way to quickly test terms for disequality, as well as

a very high-probability way to check for equality, both of which we take advantage of in our

implementation of equality and typing contexts. Unfortunately, we cannot use hash-codes

to perform a certain equality check. We experimented with global hash-consing during the

design phase of the first implementation, but decided against it due to the unwieldiness and

inefficiency of the global state and synchronization (due to thread-safety) required. However,

when constructing terms, we do allow API users to pass a local hash-consing context to the

constructor to maximize sharing; oftentimes, such as in the case of the parser, a large portion

of an application can share a single thread-local context and hence produce terms with a high

level of sharing. We take advantage of this by, when checking terms for equality, always first

checking for pointer equality; this recovers most of the advantages of global hash-consing in

cases with high sharing without most of the overhead.
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Chapter 6

Conclusion and Further Work

In this chapter, we briefly go over some of the limitations of our current approach in Section

6.1 along with potential directions for further work in Section 6.2.

6.1 Limitations of Current Approach

Our current approach to integrating ownership types and dependent types has numerous

limitations. In particular, we have no support for:

• Expressions which partially use other expressions, e.g., the Rust expression x.y, which

uses only the component y of the struct x. Similarly, we have no support for expressions

which perform partial borrows of other expressions.

• Expressions which make partial use of an array, map the elements of an array, or write

to an array

• “Mutable references,” which we may represent as linearly typed immutable terms.

All of these, however, can most likely be solved with some minor tweaks to the type theory
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and/or the addition of some new rules. A much more serious defect, in my opinion, is the

unwieldiness of the “naming” system of judgements like x ←: A used in the typing rules for

isotope. As stated in Chapter 3, this is in reality a bit of a hack, as the real implementation,

as described in Chapter 5, works by allowing expressions to be given unique tags, obviating the

need for cumbersome constructions based off variable names. Another issue is that, variable

names aside, there are simply a lot of non-orthogonal typing and reduction rules which make

reasoning inductively about the type system a pain. We hope to address both these issues in

future work by considering alternative formalisms based on proof nets, rather than standard

deductive type theory.

6.2 Further Work

6.2.1 isotope Interpreter and Compiler

One of the most important directions for further work is, of course, to complete the imple-

mentation of the isotope interpreter and type-checker. While the current implementation of

isotope is written in Rust, it may also make sense to attempt to implement a model isotope

in a dependently typed language such as Agda so as to be able to formally prove some of it’s

properties in a machine-checked manner. Similarly, a compiler based off the algorithm in

Chapter 4 has yet to be written, and there are many interesting design decisions, e.g., the

treatment of tail call optimization, or JIT compilation of interpreted terms as an optimization,

that we have not yet explored.
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6.2.2 Metaprogramming and Semantics

Originally, isotope was supposed to have had metaprogramming functionality, in the form of

the ability to perform induction on machine universes and terms. We also wished to internalize

the treatment of instants so as to be able to reason about them from inside the type system.

We did not proceed in this direction, as we wished to keep the type theory simple, but it

could provide some interesting directions for further work.

As a particular, we defined the notion of a optimization as follows

Definition 30. We define an optimization to be a relation P ⊆ Λ×Λ from the set of isotope

terms to itself such that

∀(s, t) ∈ P, ds = dt (6.1)

We say such a P is a resource preserving optimization if

∀(s, t) ∈ P, usage(s) � usage(t) (6.2)

Given a way to internally operate on terms in Λ, it could be possible to write verified opti-

mizations for isotope in isotope, which I believe would be quite an interesting development

for compiler toolchains in general.

6.2.3 Heap Model, Effects, and Locations

One of the goals of isotope was to allow reasoning about and verifying (an analog to) unsafe

code within a Rust-like language (i.e., without requiring external tools). To do this, we need

a proper model of pointers, the heap, effects, and locations which can be compiled efficiently

but is also not too difficult to reason about mathematically. There are many possible ways
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one could go about this (e.g., Hoare type theory), and exploring this design space could be

provide a fascinating source of further research directions.

6.2.4 Nontermination and Termination Checking

The original formulation of isotope was meant to include a (hopefully) consistent treatment

of non-terminating terms via a non-termination monad. The handling of equality for non-

terminating terms was originally based off a strategy similar to that found in the paper

Zombie [16]. Exploring this design further could be an interesting avenue for further research,

especially as it interacts with potential systems of effects and heap modification.
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